Experimental Brain Implant Lets Paralyzed People Communicate by Turning Thoughts Into Text

BrainGate Collaboration
BrainGate Collaboration

People with paralysis could someday use a brain implant to help them communicate their thoughts and carry out everyday tasks. As Engadget reports, a brain-computer interface (BCI) called the BrainGate2 Neural Interface System has enabled three paralyzed people to send texts, buy groceries online, stream music, and even play a virtual piano on a tablet.

The interface was developed by the BrainGate consortium, a team of neuroscientists, engineers, and computer scientists that creates new technologies for people who are paralyzed, have lost a limb, or have a neurologic disease that limits their motor function or speaking ability. Their findings were published in the journal PLOS One.

The three participants in the clinical study are paralyzed and lack the use of their arms. An implant about the size of a baby aspirin pill containing an array of microelectrodes was placed in their motor cortex—the part of the brain responsible for movement. A small sensor was used to record any neural signals associated with moving a limb, which were then decoded and sent to a virtual mouse paired to a tablet via Bluetooth.

In other words, the participants just had to think about moving a cursor on a screen, and the interface did the heavy lifting for them. They were able to type 30 characters per minute and make 22 point-and-click selections per minute.

Similar technologies have been developed in the past, but this one lets people use an off-the-shelf tablet without having to make any modifications, according to Engadget.

A participant plays a virtual piano
BrainGate Collaboration

Although the brain implant technology is still in the experimental stage and is not yet ready for commercial development, several of the study’s authors said the results are promising and could vastly improve the quality of life for people with paralysis.

Stanford University bioengineer and lead author Paul Nuyujukian said in a statement, "One of the participants told us at the beginning of the trial that one of the things she really wanted to do was play music again. So, to see her play on a digital keyboard was fantastic."

[h/t Engadget]

When You Feel "Chemistry" With Someone, What's Actually Going On?

iStock
iStock

We know chemistry when we feel it with another person, but we don't always know why we're drawn to one person over another. Is it just a cascade of neurotransmitters and hormones conspiring to rush you toward reproduction? Is it attraction borne of a set of shared values? Or is it bonding over specific experiences that create intimacy?

It's probably a combination of all three, plus ineffable qualities that even matchmaking services can't perfectly nail down.

"Scientists now assume, with very few exceptions, that any behavior has features of both genetics and history. It's nature and nurture," Nicole Prause, a sexual psychophysiologist and neuroscientist, tells Mental Floss. She is the founder of Liberos, a Los Angeles-based independent research center that works in collaboration with the University of Georgia and the University of Pittsburgh to study human sexual behavior and develop sexuality-related biotechnology.

Scientists who study attraction take into consideration everything from genetics, psychology, and family history to traumas, which have been shown to impact a person's ability to bond or feel desire.

THE (BRAIN) CHEMISTRY OF LOVE

Helen Fisher, a biological anthropologist at Rutgers University, Match.com's science advisor, and the author of Anatomy of Love: A Natural History of Mating, Marriage, and Why We Stray, breaks down "love" into three distinct stages: lust, attraction, and attachment. In each stage, your body chemistry behaves differently. It turns out that "chemistry" is, at least in part, actual chemistry. Biochemistry, specifically.

In the lust and attraction phases, your body is directing the show, as people can feel desire without knowing anything personal about the object of that desire. Lust, Fisher asserts in a seminal 1997 paper [PDF], is nothing more than the existence of a sex drive, or "the craving for sexual gratification," she writes. It's a sensation driven by estrogens and androgens, the female and male sex hormones, based in the biological drive to reproduce.

Attraction may be influenced less than lust by physiological factors—the appeal of someone's features, or the way they make you laugh—but your body is still calling the shots at this stage, pumping you full of the hormones cortisol, adrenaline, and dopamine, effecting your brain in a way that's not unlike the way illicit substances do.

Fisher has collaborated multiple times on the science of attraction with social psychologist Arthur Aron, a research professor at Stony Brook University in New York. Aron and his wife Elaine, who is also a psychologist, are known for studying what makes relationships begin—and last.

In a 2016 study in Frontiers in Psychology, the researchers proposed that "romantic love is a natural (and often positive) addiction that evolved from mammalian antecedents by 4 million years ago as a survival mechanism to encourage hominin pair-bonding and reproduction, seen cross-culturally today."

In the attraction phase, your body produces increased amounts of dopamine, the feel-good chemical that is also responsible for pain relief. Using fMRI brain imaging, Aron's studies have shown that "if you're thinking about a person you're intensely in love with, your brain activates the dopamine reward system, which is the same system that responds to cocaine," he tells Mental Floss.

Earlier, Fisher's 1997 paper found that new couples often show "increased energy, less need for sleep or food, focused attention and exquisite delight in smallest details of this novel relationship."

The attachment phase is characterized by increases in oxytocin and vasopressin; these hormones are thought to promote bonding and positive social behaviors to sustain connections over time in order to fulfill parental duties.

There is no hard and fast timeline for how long each phase lasts, as it can vary widely due to gender, age, and other environmental factors, Fisher writes.

Additionally, while oxytocin has long gotten the credit for being the love hormone, Prause says that scientists are now "kind of over oxytocin," because it has broader functions than simply bonding. It also plays a role in the contraction of the uterus to stimulate birth, instigating lactation, and sexual arousal; low levels have been linked to autism spectrum disorders. 

Now they're focusing on a charmingly named hormone known as kisspeptin (no, really). Produced in the hypothalamus, kisspeptin plays a role in the onset of puberty, and may increase libido, regulate the gonadal steroids that fuel the sex drive, and help the body maintain pregnancy. But Prause says there is a lot more study about the role kisspeptin plays in attraction.

CHEMICAL AND PERSONAL BONDS

Biology may explain our initial attraction and the "honeymoon" phase of a relationship, but it doesn't necessarily explain why a person's love of obscure movies or joy of hiking tickles your fancy, or what makes you want to settle down.

The Arons' numerous studies on this subject have found connection boils down to something quite simple: "What makes people attracted to the point of falling in love—presuming the person is reasonably appropriate for them—is that they feel the other person likes them," he says. 

In the process of doing research for her book How To Fall in Love With Anyone, writer Mandy Len Catron of Vancouver became her own test subject when she came across the research the Arons are most well-known for: their 36 questions, which promote bonding.

The questions were originally designed to "generate intimacy, a sense of feeling similar, and the sense that the other person likes you," Aron explains. Romantic love wasn't the goal. "It was a way of creating closeness between strangers."

The Arons first tested their questions by pairing up students during a regular class section of a large psychology course, as they related in a paper in the journal Personality and Social Psychology Bulletin. Some students were paired with someone of the same sex, while others were matched with someone of the opposite sex. Each partner then answered a series of 36 increasingly personal questions, which took about 45 minutes each. (Question 2: "Would you like to be famous? In what way?" Question 35: "Of all the people in your family, whose death would you find most disturbing? Why?") Small talk during class hadn't made them bond, but the questions made the students feel closer.

In another version of the study, heterosexual, opposite-sex pairs follow the 36-question session with four minutes of staring deeply into each other's eyes.

Catron decided to test these methods out with a casual acquaintance, Mark, over beers at a local bar one night. They were both dating other people at the time, and no one exclusively. As she answered the questions and listened to Mark's answers, "I felt totally absorbed by the conversation in a way that was unlike any of the other first dates I was having at the time with people I met online," Catron tells Mental Floss.

She was ready to skip the four minutes of soulful eye gazing, but Mark thought they should try it. "It was deeply uncomfortable, but it was also an important part of the experience," she recalls. "It's so intimate, it requires you to let your guard down."

The process instilled in Catron a deep feeling of trust in Mark and a desire to know him better. Within three months, they began dating in earnest. Now, more than three years later, they live together in a condo they bought.

The Arons' questions offer "accelerated intimacy," she says, in a time of increasingly online-driven dating experiences.

A LITTLE MYSTERY, A LOT OF SHARED VALUES

Despite all that we’ve learned, scientists may only ever be able to brush up against the edge of a true understanding of "chemistry." “We understand a fair amount about what happens when [attraction has] already occurred, but we're really bad at predicting when it will happen," Prause says. "People who try to claim magical matchmaking, or that they're going to somehow chemically manipulate an aphrodisiac or something—well good luck! Because we can't figure it out.”

And anyway, what's romance without a little mystery?

If you must have a definitive answer to the puzzle of interpersonal chemistry, Prause says to keep this in mind: "The best predictor of long-term outcomes is shared values."

This piece originally ran in 2018.

11 Squeaky-Clean Facts About Spit

iStock/fotolinchen
iStock/fotolinchen

Though most people find the thought of saliva rather disgusting, spit plays a vital role in our lives. It allows us to comfortably chew, swallow, and digest. It fights off bacteria in our mouths and elsewhere, and leads the mouth’s bold fight against cavities. Here are 11 facts that might have you reconsidering that unsung hero of bodily fluids: spit.

1. Spit is mostly water.

Saliva consists of about 99 percent water. The other 1 percent is made up of electrolytes and organic substances, including digestive enzymes and small quantities of uric acid, cholesterol, and mucins (the proteins that form mucus).

2. There's a medical standard for how much spit you should have.

Healthy individuals accumulate between 2 and 6 cups of spit a day. That’s without stimulation from activities like eating or chewing gum, which open the spit floodgates [PDF].

3. Saliva production has a circadian rhythm.

Your body typically produces the most saliva in the late afternoon, and the least at night. Salivation is controlled by the autonomic nervous system (much like your heartbeat), meaning it’s an unconscious process.

4. There are five different kinds of spit.

Salivation has five distinct phases, most triggered by the passage of food through the body. Not all of them are a good thing. The first type of salivation is cephalic, the kind that occurs when you see or smell something delicious. The buccal phase is the body’s reflexive response to the actual presence of food in the mouth (which aids in swallowing). The esophageal involves the stimulation of the salivary glands as food moves through the esophagus. The gastric phase happens when something irritates your stomach—like when you’re just about to puke. The intestinal phase is triggered by a food that doesn’t agree with you passing through the upper intestine.

5. Spit can battle bacteria.

There’s a reason the phrase “lick your wounds” came about. Spit is full of infection-battling white blood cells. And, according to a 2015 study in the journal Blood, neutrophils—a type of white blood cell—are more effective at killing bacteria if they come from saliva than from anywhere else in the body. So adding saliva to a wound gives the body a powerful backup as it fights off infection.

6. Spit keeps you from getting cavities.

The calcium, fluoride, and phosphate in saliva strengthen your teeth. Spit also fights cavity-causing bacteria, washes away bits of food, and neutralizes plaque acids, reducing tooth decay and cavities. That’s why chewing gum gets dentists’ stamp of approval—chewing increases the flow of saliva, thus protecting your oral health.

7. You need spit if you want to taste anything.

Saliva acts like a solvent for tastes, ferrying dissolved deliciousness to the sites of taste receptors. It also keeps those receptors healthy by preventing them from drying out and protecting them from bacterial infection. Many people who have dry mouth (or xerostomia) find their sense of taste affected by their oral cavity’s parched conditions. Because many medications have dry mouth as a side effect, scientists have developed artificial saliva sprays that mimic the lubrication of real spit.

8. Swapping spit exchanges millions of bacteria.

A 10-second kiss involves the transfer of some 80 million bacteria, one study found.

9. People aren’t born drooling.

Babies don’t start drooling until they’re 2 to 4 months old. Unfortunately, they also don’t really know what to do with their spit. They don’t have full control of the muscles of their mouth until they’re around 2 years old, so they can’t really swallow it effectively. Which is why we invented bibs.

10. Stress can leave you spit-less.

The body’s fight-or-flight response is designed to give you the energy and strength needed to overcome a near-death experience, like, say, running into a bear or giving a big presentation at work. Your blood pressure goes up, the heart beats faster, and the lungs take in more oxygen. This is not the time to sit around and digest a meal, so the digestion system slows down production, including that of saliva.

11. A lack of spit was once used as an admission of guilt.

In some ancient societies, saliva was used as a basic lie detector. In ancient India, accused liars had to chew grains of rice. If they were telling the truth, they would have enough saliva to spit them back out again. If someone was lying, their mouth would go dry and the rice would stick in their throat.

SECTIONS

arrow
LIVE SMARTER