15 of the Longest-Running Scientific Studies in History

Most experiments are designed to be done quickly. Get data, analyze data, publish data, move on. But the universe doesn’t work on nice brief timescales. For some things you need time. Lots of time.

1. THE BROADBALK EXPERIMENT // 173 YEARS

In 1842, John Bennet Lawes patented his method for making superphosphate (a common, synthetic plant nutrient) and opened up what is believed to be the first artificial fertilizer factory in the world. The following year, Lawes and chemist Joseph Henry Gilbert began a series of experiments comparing the effects of organic and inorganic fertilizers, which are now the oldest agricultural studies on Earth. For over 150 years parts of a field of winter wheat have received either manure, artificial fertilizer, or no fertilizer. The results are about what you’d expect: artificial and natural fertilized plots produce around six to seven tons of grain per hectare, while the unfertilized plot produces around one ton of grain per hectare. But there’s more. They can use these studies to test everything from herbicides to soil microbes and even figure out oxygen ratios for better reconstruction of paleoclimates.

2. THE PARK GRASS EXPERIMENT // 160 YEARS

Lawes and Gilbert started several more experiments at around the same time. In one of these experiments with hay, Lawes observed that each plot was so distinct that it looked like he was experimenting with different seed mixes as opposed to different fertilizers. The nitrogen fertilizers being applied benefited the grasses over any other plant species, but if phosphorus and potassium were the main components of the fertilizer, the peas took over the plot. Since then, this field has been one of the most important biodiversity experiments on Earth.

3. THE BROADBALK AND GEESCROFT WILDERNESSES // 134 YEARS

Yet another one of Lawes’ experiments: In 1882 he abandoned part of the Broadbalk experiment to see what would happen. What happened was that within a few years, the wheat plants were completely outcompeted by weeds—and then trees moved in [PDF]. In 1900, half of the area was allowed to continue as normal and the other half has had the trees removed every year in one of the longest studies of how plants recolonize farmland.

4. DR. BEAL’S SEED VIABILITY EXPERIMENT // 137 YEARS

In 1879, William Beal of Michigan State University buried 20 bottles of seeds on campus. The purpose of this experiment was to see how long the seeds would remain viable buried underground. Originally, one bottle was dug up every five years, but that soon changed to once every 10 years, and is now once every 20 years. In the last recovery in 2000, 26 plants were germinated, meaning slightly more than half survived over 100 years in the ground. The next will be dug up in 2020, and (assuming no more extensions) the experiment will end in 2100.

Even if it is extended for a while, there will probably still be viable seeds. In 2008, scientists were able to successfully germinate a circa-2000 year old date palm seed, and four years later, Russian scientists were able grow a plant from a 32,000 year old seed that had been buried by an ancient squirrel.

5. THE PITCH DROP EXPERIMENT // 86 YEARS

If you hit a mass of pitch (the leftovers from distilling crude oil) with a hammer, it shatters like a solid. In 1927, Thomas Parnell of the University of Queensland in Australia decided to demonstrate to his students that it was actually liquid. They just needed to watch it for a while. Some pitch was heated up and poured into a sealed stem glass funnel. Three years later, the stem of the funnel was cut and the pitch began to flow. Very slowly. Eight years later, the first drop fell. Soon the experiment was relegated to a cupboard to collect dust, until 1961 when John Mainstone learned of its existence and restored the test to its rightful glory. Sadly, he never saw a pitch drop. In 1979 it dropped on a weekend, in 1988 he was away getting a drink, in 2000 the webcam failed, and he died before the most recent drop in April 2014.

As it turns out, the Parnell-initiated pitch drop experiment isn’t even the oldest. After it gathered international headlines, reports of other pitch drop experiments became news. Aberystwyth University in Wales found a pitch drop experiment that was started 13 years before the Australian one, and has yet to produce a single drop (and indeed is not expected to for another 1300 years), while the Royal Scottish Museum in Edinburgh found a pitch drop experiment from 1902. All of them prove one thing though: With enough time, a substance that can be shattered with a hammer still might be a liquid.

6. THE CLARENDON DRY PILE // 176-191 YEARS

Around 1840, Oxford physics professor Robert Walker bought a curious little contraption from a pair of London instrument makers that was made up of two dry piles (a type of battery) connected to bells with a metal sphere hanging in between them. When the ball hit one of the bells, it became negatively charged and shot towards the other positively charged bell where the process repeats itself. Because it uses only a minuscule amount of energy, the operation has occurred ten billion times and counting. It’s entirely possible that the ball or bells will wear out before the batteries fully discharge.

Although we don’t know the composition of the battery itself (and likely won’t until it winds down in a few hundred years), it has led to scientific advancements. During WWII, the British Admiralty developed an infrared telescope that needed a battery capable of producing high voltage, low current, and that could last forever. One of the scientists remembered seeing the Clarendon Dry Pile—also referred to as the Oxford Electric Bell—and was able to find out how to make his own dry pile for the telescope.

7. THE BEVERLY (ATMOSPHERIC) CLOCK // 152 YEARS

Sitting in the foyer of the University of Otago in New Zealand is the Beverly Clock. Developed in 1864 by Arthur Beverly, it is a phenomenal example of a self-winding clock. Beverly realized that, while most clocks used a weight falling to get the energy to run the clock mechanism, he could get the same energy with one cubic foot of air expanding and contracting over a six-degree Celsius temperature range. It hasn’t always worked; there have been times it needed cleanings, it stopped when the Physics department moved, and if the temperature is too stable it can stop. But it’s still going over 150 years later.

8. THE AUDUBON CHRISTMAS BIRD COUNT // 116 YEARS

Since 1900, folks from across the continent have spent time counting birds. What began as an activity to keep people from hunting our feathered friends on Christmas Day, has turned into one of the world’s most massive and long-lasting citizen science projects. Although the 2015 results aren’t ready yet, we know that in 2014, 72,653 observers counted 68,753,007 birds of 2106 species.

9. THE HARVARD STUDY OF ADULT DEVELOPMENT // 78 YEARS

One of the longest running development studies, in 1938 Harvard began studying a group of 268 sophomores (including one John F. Kennedy), and soon an additional study added 456 inner-city Bostonians. They’ve been followed ever since, from World War II through the Cold War and into the present day, with surveys every two years and physical examinations every five. Because of the sheer wealth of data, they’ve been able to learn all kinds of interesting and unexpected things. One such example: The quality of vacations one has in their youth often indicates increased happiness later in life.

10. THE TERMAN LIFE CYCLE STUDY // 95 YEARS

In 1921, 1470 California children who scored over 135 on an IQ test began a relationship that would turn into one of the world’s most famous longitudinal studies—the Terman Life Cycle Study of Children with High Ability.  Over the years, in order to show that early promise didn’t lead to later disappointment, participants filled out questionnaires about everything from early development, interests, and health to relationships and personality.  One of the most interesting findings is that, even among these smart folk, character traits like perseverance made the most difference in career success.

11. THE NATIONAL FOOD SURVEY // 76 YEARS

Starting in 1940, the UK’s National Food Survey tracked household food consumption and expenditure, and was the longest lasting program of its kind in the world. In 2000 it was replaced with the Expenditure and Food Survey, and in 2008 the Living Costs and Food Survey. And it’s provided interesting results. For instance, earlier this year it was revealed that tea consumption has fallen from around 23 cups per person per week to only eight cups, and no one in the UK ate pizza in 1974, but now the average Brit eats 75 grams (2.5 ounces) a week.

12. THE FRAMINGHAM HEART STUDY // 68 YEARS

In 1948, the National Heart, Lung, and Blood Institute teamed up with Boston University to get 5209 people from the town of Framingham to do a long-term study of how cardiovascular disease developed. Twenty-three years later they also recruited the adult children of the original experiment and in 2002 a third generation. Over the decades, the Framingham Heart Study researchers claim to have discovered that cigarette smoking increased risk, in addition to identifying potential risk factors for Alzheimer’s, and the dangers of high blood pressure.

13. THE E. COLI LONG TERM EVOLUTION EXPERIMENT // 26 YEARS

While this one might not seem that impressive in terms of length, it has to be the record for number of generations that have come and gone over the course of the study: well over 50,000. Richard Lenski was curious whether flasks of identical bacteria would change in the same way over time, or if the groups would diverge from each other. Eventually, he got bored with the experiment, but his colleagues convinced him to keep going, and it’s a good thing they did. In 2003, Lenski noticed that one of flasks had gone cloudy, and some research led him to discover that the E. coli in one of the flasks had gained the ability to metabolize citrate. Because he had been freezing previous generations of his experiment, he was able to precisely track how this evolution occurred.

14. THE BSE EXPERIMENT // 11 YEARS

Sadly, sometimes things can go terribly wrong during long-term experiments. Between 1990 and 1992, British scientists collected thousands of sheep brains. Then, for over four years, those prepared sheep brains were injected into hundreds of mice to learn if the sheep brains were infected with BSE (mad-cow disease). Preliminary findings suggested that they were, and plans were drawn up to slaughter every sheep in England. Except those sheep brains? They were actually cow brains that had been mislabeled. And thus ended the longest running experiment on sheep and BSE.

15. THE JUNEAU ICEFIELD RESEARCH PROGRAM // 68 YEARS

Attention to glacier retreat and the effects of global warming on the world’s ice fields has rapidly increased over the course of the last few decades, but the Juneau Icefield Research Program has been monitoring the situation up north since 1948. In its nearly 70 years of existence, the project become the longest-running study of its kind, as well as an educational and exploratory experience. The monitoring of the many glaciers of the Juneau Icefield in Alaska and British Columbia has a rapidly approaching end date though—at least in geological terms. A recent study published in the Journal of Glaciology predicts that the field will be gone by 2200.

Some Fish Eggs Can Hatch After Being Pooped Out by Swans

iStock/olaser
iStock/olaser

A question that’s often baffled scientists is how certain species of fish can sometimes appear—and even proliferate—in isolated bodies of water not previously known to harbor them. A new study has demonstrated that the most unlikely explanation might actually be correct: It’s possible they fell from the sky.

Specifically, from the rear end of a swan.

A study in the journal Ecology by researchers at the Unisinos University in Brazil found that killifish eggs can, in rare cases, survive being swallowed by swans, enduring a journey through their digestive tracts before being excreted out. This kind of fecal public transportation system explains how killifish can pop up in ponds, flood waters, and other water bodies that would seem an unlikely place for species to suddenly appear.

After discovering that some plants could survive being ingested and then flourish in swan poop, researchers took notice of a killifish egg present in a frozen fecal sample. They set about mixing two species of killifish eggs into the food supply of coscoroba swans living in a zoo. After waiting a day, they collected the poop and dug in looking for the eggs.

Of the 650 eggs they estimated to have been ingested by the swans, about five were left intact. Of those, three continued to develop. Two died of a fungal infection, but one survived, enduring 30 hours in the gut and hatching 49 days after being excreted.

Because killifish eggs have a thick outer membrane, or chorion, they stand a chance of coming through the digestive tract of an animal intact. Not all of what a swan ingests will be absorbed; their stomachs are built to extract nutrients quickly and get rid of the whatever's left so the birds can eat again. In rare cases, that can mean an egg that can go on to prosper.

Not all fish eggs are so durable, and not all fish are quite like the killifish. Dubbed the "most extreme" fish on Earth by the BBC, killifish have adapted to popping up in strange environments where water may eventually dry up. They typically live for a year and deposit eggs that can survive in soil, delaying their development until conditions—say, not being inside a swan—are optimal. One species, the mangrove killifish, can even breathe through its skin. When water recedes, they can survive on land for over two months, waddling on their bellies or using their tails to "jump" and eat insects. A fish that can survive on dry land probably doesn't sweat having to live in poop.

The researchers plan to study carp eggs next to see if they, too, can go through a lot of crap to get to where they’re going.

[h/t The New York Times]

8 Facts About the Animals of Chernobyl

iStock/Tijuana2014
iStock/Tijuana2014

Three decades after the Chernobyl disaster—the world’s worst nuclear accident—signs of life are returning to the exclusion zone. Wild animals in Chernobyl are flourishing within the contaminated region; puppies roaming the area are capturing the hearts of thousands. Tourists who have watched the critically acclaimed HBO series Chernobyl are taking selfies with the ruins. Once thought to be forever uninhabitable, the Chernobyl Exclusion Zone has become a haven for flora and fauna that prove that life, as they say in Jurassic Park, finds a way.

1. The animals of Chernobyl survived against all odds.

The effects of the radioactive explosion at the Chernobyl nuclear power plant on April 26, 1986 devastated the environment. Around the plant and in the nearby city of Pripyat in Ukraine, the Chernobyl disaster’s radiation caused the leaves of thousands of trees to turn a rust color, giving a new name to the surrounding woods—the Red Forest. Workers eventually bulldozed and buried the radioactive trees. Squads of Soviet conscripts also were ordered to shoot any stray animals within the 1000-square-mile Chernobyl Exclusion Zone. Though experts today believe parts of the zone will remain unsafe for humans for another 20,000 years, numerous animal and plant species not only survived, but thrived.

2. Bears and wolves outnumber humans around the Chernobyl disaster site.

While humans are strictly prohibited from living in the Chernobyl Exclusion Zone, many other species have settled there. Brown bears, wolves, lynx, bison, deer, moose, beavers, foxes, badgers, wild boar, raccoon dogs, and more than 200 species of birds have formed their own ecosystem within the Chernobyl disaster area. Along with the larger animals, a variety of amphibians, fish, worms, and bacteria makes the unpopulated environment their home.

3. Most Chernobyl animals don’t look any different from their non-Chernobyl counterparts.

Stray puppies play in an abandoned, partially-completed cooling tower inside the exclusion zone at the Chernobyl nuclear power plant
Sean Gallup, Getty Images

Tour guides tell visitors not to pet Chernobyl animals due to potential radioactive particles in their fur, but some biologists have been surprised that the incidence of physical mutations appears lower than the blast of radiation would have suggested. There have been some oddities recorded within the area—such as partial albinism among barn swallows—but researchers think that the serious mutations mostly happened directly after the explosion. Today’s wild animals are sporting their normal number of limbs and aren’t glowing.

4. Radiation may have killed off Chernobyl’s insects.

In contrast to the large carnivores and other big fauna, bugs and spiders have seen a big drop in their numbers. A 2009 study in Biology Letters indicated that the more radiation there was in certain locations around the Chernobyl disaster area, the lower the population of invertebrates. A similar phenomenon occurred after the 2011 nuclear accident at the Fukushima nuclear power plant. Bird, cicada, and butterfly populations decreased, while other animal populations were not affected.

5. Despite looking normal, Chernobyl's animals and plants are mutants.

There may be no three-headed cows roaming around, but scientists have noted significant genetic changes in organisms affected by the disaster. According to a 2001 study in Biological Conservation, Chernobyl-caused genetic mutations in plants and animals increased by a factor of 20. Among breeding birds in the region, rare species suffered disproportional effects from the explosion’s radiation compared to common species. Further research is needed to understand how the increased mutations affect species’ reproductive rates, population size, genetic diversity, and other survival factors.

6. The absence of humans is returning Chernobyl to wilderness.

As WIRED points out, the Chernobyl disaster presents an unintended experiment in what Earth would be like without humans. Hunting is strictly illegal and living within the Chernobyl Exclusion Zone is not recommended. The fewer humans there are, the more nature can re-establish itself unencumbered by human activity. According to The Guardian, an official nature reserve recently created on the Belorussian side of the zone claims to be “Europe’s largest experiment in rewilding,” where animals are losing their fear of humans. In fact, a few species are actually living better within the Chernobyl Exclusion Zone than outside of it. Wolves were found to be seven times as abundant on the premises than in other, non-radioactive areas. Moose, roe deer, red deer, and wild boar were found to have similar numbers within the CEZ as compared to those in three uncontaminated nature reserves in Belarus.

7. An endangered wild horse is making a comeback thanks to Chernobyl.

A Przewalski's horse lays in a meadow
PATRICK PLEUL, AFP/Getty Images

British ecologists Mike Wood and Nick Beresford, who specialize in studying the effects of radiation on Chernobyl’s wildlife, observed that the Przewalski’s horse—an endangered wild species that originated in Mongolia—is thriving within the CEZ. In the late 1990s, about 30 Przewalski’s horses were released in the Ukrainian side of the CEZ. Based on camera trap images, Wood estimated that some of the original horses (identified by their brand markings) are still alive. Photos of juvenile horses and foals also indicated that the population is expanding.

8. You can adopt a Chernobyl puppy.

Hundreds of pooches—the descendants of dogs abandoned by their owners during the site’s evacuation on April 27, 1986—have made the desolate area their home. Until 2018, it was illegal to bring any animal out of the zone due to the risk of radiation contamination. But now, puppies cleared of radiation are getting a chance to find their forever homes. Spearheaded by the Clean Futures Fund and SPCA International, the management and adoption program ensures that the stray dogs are spayed, neutered, and vaccinated so they will be healthy and ready for adoption.

SECTIONS

arrow
LIVE SMARTER