How Playtex Helped Win the Space Race


To the uneducated observer, “Big Moe” and “Sweet Sue” looked like horizontal monoliths on the floor of the production plant of the International Latex Corporation (ILC) in Dover, Delaware. The giant sewing machines were the only two that were big enough (after the additions of an elongated arm and a new sewing bed) to accommodate the bulk of a nearly-completed A7L, the company’s answer to NASA’s demand for a spacesuit that could withstand the punishing conditions of lunar exploration.

The “A” was for Apollo, NASA's blanket name for the moon missions; the “7” signified the generation of suit; the “L” was for ILC and latex, some of the most crucial material in the 21 layers being stitched and glued together around the clock.

Using modified versions of the same Singer sewing machines used for girdles, bras, and diaper covers, ILC—better known by their overarching consumer brand label, Playtex—was, after a successful bid on the job, charged to protect astronauts from the jagged rocks, lack of oxygen, and searing heat (and freezing cold) on the moon's surface. The women assembling the suits had been pulled from undergarment assembly lines, sometimes working in excess of 80 hours a week to make sure the suits were ready on time.

A few of the seamstresses would post a picture of the astronaut whose outfit they were tailoring near their stations [PDF]. It was a reminder that the work they were doing was a different kind of support system than they were used to providing. One errant stitch could mean thousands of dollars in wasted expenses. It could also mean someone’s life.

That fear was more present in some space explorers than others. One seamstress kept a note that an astronaut had sent to the factory. “I would hate,” it read, “to have a tear in my pants while on the moon.”


Of all the military-industrial businesses to try and seduce NASA into being awarded a contract, Playtex was by far the least likely contender. Formed in 1932 by A.N. Spanel, the garment manufacturer had found its niche in rubber and latex-sourced underwear, particularly the form-fitting girdles that had slowly overtaken corsets in the first part of the 20th century.

Although most of their business stemmed from intimate apparel, Playtex maintained a small but busy Industrial Products Division that had secured contracts with the Air Force in the 1950s for pressure helmets [PDF]. They had also come close to winning a bid for high-altitude flight suits with mobile joints, as well as a contract for NASA’s Mercury and Gemini programs.

When NASA began soliciting bids for their spacesuit development in 1961 following President John F. Kennedy’s public declaration of a moon visit, Playtex threw their name into the hat. At a time when the space agency was preoccupied with hard-shelled suits for lunar exploration, Playtex's premise of a “convolute,” or bellow-shaped joint, was intriguing. The flexion of the elbows, knees, wrists, ankles, and shoulders allowed a suit to maintain air pressure (3.75 pounds of oxygen per square inch) while keeping the wearer mobile enough to bend over, pick up objects, and climb ladders.

NASA was impressed, but Playtex's lack of experience with industrial outfitting was worrisome. Instead, they signed with longtime military supplier Hamilton-Standard in 1962 for the suit’s hardware—like the backpack life support system that offered recirculated oxygen—and directed them to subcontract with Playtex for issues relating to fabrics.

MrBikerBoyzz via YouTube

The marriage was awkward from the start. Hamilton-Standard had a regimented approach to design that more closely resembled a blueprint for a machine; Playtex, in contrast, saw the spacesuit as an extension of the human inside of it. Hamilton wanted a second, back-up pressurized bladder installed in case the first one suffered from failure. It was a practical idea, but it also severely hindered movement: In a January 1964 test in simulated lunar gravity, the wearer, lying on his back, couldn’t get up.

Around the same time, Playtex took note of how a front-closing suit’s zipper could become too strained when the astronaut moved forward. When it asked Hamilton-Standard to fund exploration of a rear-entry suit, the company declined.

The two accomplished relatively little between 1962 and 1965. One of the most important features, a protective outer layer that could resist micrometeoroid showers, was developed by NASA internally; Hamilton-Standard pioneered a cooling tube system to regulate body temperature. (The moon could see days as hot as 300 degrees Fahrenheit and nights as cool as -271.) Hamilton-Standard also busied itself with a self-labeled “tiger” suit that they felt addressed Playtex’s shortcomings, a side project that further fractured their working relationship.

In February 1965, Hamilton-Standard made an appeal to NASA: Playtex, they argued, was a consumer brand that couldn’t work within the confines of the complex engineering the suits required. One of the project leaders, George Durney, was a former sewing machine salesman, not a scientist. They didn’t have thousands of sheets of paper documenting every inch of work performed. Bureaucracy wasn’t their strong suit.

NASA agreed. That same month, Hamilton-Standard terminated Playtex. They no longer had a lane in the space race.


Hamilton-Standard wasn’t faring much better on their own, though. Their suits, ineffectual and stiff, prompted NASA to hit a reset button and cancel their contract as well. In spring 1965, NASA announced that they’d be holding a second round of bids for the Apollo missions. Both Hamilton-Standard and David Clark, another industrial contractor, were invited to submit samples. Playtex was not.

Len Sheperd, who had been with Playtex’s industrial arm since it first began working with NASA, made a last-minute plea to the space agency: Playtex would pay its own expenses if they were allowed to be a dark horse third entrant. NASA agreed, providing the company could deliver a suit in six weeks.

To meet the July 1965 deadline, Playtex had only a skeleton crew of 12 designers and engineers free to work on the project. They worked around the clock, perfecting the bellows to allow for joint movement and incorporating NASA’s thermal cooling and protective outer shell. Some offices that held fabrics or design templates were locked up at night; supervisors picked the locks to get in.

When NASA greeted two of the three bidders in Houston—Playtex wound up being two weeks late—they had devised a series of 22 tests to see how each suit responded to the simulated demands of lunar exploration. David Clark’s suit had a pressurization malfunction: the helmet blew clean off during a simulated engine cover maneuver. Hamilton-Standard, committed to the bulk, was embarrassed to see that, after a simulated walk on the moon, the suit became too wide to fit inside a capsule. Their astronaut would have been stranded in space.

Playtex won the suit stand-off with ease, passing 12 of the 22 tests. NASA declared there wasn’t a second-place finisher. This time, it would be Hamilton-Standard playing a supporting role, supplying their backpacks for Playtex to incorporate.

Work began in both Dover and at a new facility in Frederica, Delaware on the flight suits, which combined Playtex’s focus on flexibility with the specifications for safety provided by NASA. More seamstresses were added to the growing department, adapting their ability to a different atmosphere entirely.

MrBikerBoyzz via YouTube

The suits had to be perfect every time out, despite some workers having to stitch “blind” owing to the multiple layers. The women were dissuaded from using pins—it could puncture the latex bladder—but those that insisted were given color-coded tips so managers could track them. After a rogue pin was discovered in a suit, they were regularly X-rayed to make sure it didn’t happen again. And if the seamstress brought in her own pins, the guilty party had it poked into her rear end by a disgruntled supervisor.

Double-shift workweeks were common. One seamstress, Eleanor Foraker, had two nervous breakdowns. While the suits were tested and re-tested, a missed detail or malfunction would cause death in less than 30 seconds. The gloves needed to be nimble enough to pick up a dime while sturdy enough to maintain pressure. A woven steel fabric was used for gauntlets to secure them to the suits.

Although Playtex had an agreement for the Apollo mission suits locked in place, they decided to secure a future opportunity: a suit that could be used for extended lunar exploration. In 1968, they filmed tests with their A7LB prototype, an air-filled suit that kept its wearer nimble enough to play football in an open field. NASA bought that one, too.

But the design of the suits had a goalpost that kept moving. After Apollo 1 caught fire on a launch pad in January 1967, killing three astronauts, Playtex went in search of a fire-retardant material that could help resist flames long enough for the wearer to make a clean break from a blaze. They found a woven fiberglass material coated with Teflon, resistant to 1200 degrees Fahrenheit.

Although Playtex began shipping the A7L suits in 1966, their real test didn’t come until July 1969. That was when the company—along with 528 million television viewers—would see how they stood up to man’s first moonwalk.

Durney, Sheperd, and a Playtex industrial team that had grown into the hundreds watched nervously as Neil Armstrong sunk his boot into the surface of the moon on July 20, 1969. They had planned for every possible contingency—Armstrong stepping on a sharp rock, or sinking into the loose ground. One micrometeoroid shower or accident could mean death. When Armstrong appeared to stumble, they gasped.

But he didn’t fall. Armstrong and Buzz Aldrin spent two and a half hours on the moon collecting samples, returning to dock with astronaut Michael Collins on the command module Columbia. The suits painstakingly crafted on standard Singer sewing machines had stood up to the rigors of space travel.

“It was rough, reliable, and almost cuddly,” Armstrong later said of the suit.

Playtex would go on to split into separate entities, one for consumer manufacturing and one for industrial goods, ILC Dover, where they have continued making shuttle suits over the next five decades up to the present day.

After use, all of the suits were immediately shuttled to the Smithsonian’s storage facility in Suitland, Maryland. In the case of the earliest lunar couture, they still have a Playtex seamstress’s final touch: their name written inside of the suit.

Additional Sources: Spacesuit: Fashioning Apollo; Moon Machines.

The Fascinating Device Astronauts Use to Weigh Themselves in Space

Most every scale on Earth, from the kind bakers use to measure ingredients to those doctors use to weigh patients, depends on gravity to function. Weight, after all, is just the mass of an object times the acceleration of gravity that’s pushing it toward Earth. That means astronauts have to use unconventional tools when recording changes to their bodies in space, as SciShow explains in the video below.

While weight as we know it technically doesn’t exist in zero-gravity conditions, mass does. Living in space can have drastic effects on a person’s body, and measuring mass is one way to keep track of these changes.

In place of a scale, NASA astronauts use something called a Space Linear Acceleration Mass Measurement Device (SLAMMD) to “weigh” themselves. Once they mount the pogo stick-like contraption it moves them a meter using a built-in spring. Heavier passengers take longer to drag, while a SLAMMD with no passenger at all takes the least time to move. Using the amount of time it takes to cover a meter, the machine can calculate the mass of the person riding it.

Measuring weight isn’t the only everyday activity that’s complicated in space. Astronauts have been forced to develop clever ways to brush their teeth, clip their nails, and even sleep without gravity.

[h/t SciShow]

7 Surprising Facts About Pluto

Pluto, the ninth planet of the classical solar system was, until 2015, largely a mystery—a few pixels 3.6 billion miles from the Sun. When NASA's New Horizons spacecraft arrived at the diminutive object in the far-off Kuiper Belt, planetary scientists discovered a geologist's Disneyland—a mind-blowing world of steep mountains, smooth young surfaces, ice dunes, and a stunning blue atmosphere. To learn more, Mental Floss spoke to Kirby Runyon, a planetary geomorphologist at the Johns Hopkins University Applied Physics Laboratory and a scientist on the NASA New Horizons geology team. Here is what you need to know about Pluto, the small world with the biggest heart in the solar system.


At 1473 miles in diameter—about half the width of the United States—Pluto is the smallest of the nine classical planets and the largest discovered "trans-Neptunian object" (i.e., an object beyond the planet Neptune). As could be expected, it is cold on Pluto's surface: around -375°F. Its gravity is about 1/15 that of Earth. It has five moons: Charon, Nix, Hydra, Kerberos, and Styx. Charon is the largest of the moons by far, with a diameter about half that of Pluto. It takes about 248 Earth years for Pluto to circle the Sun, and during that time, its highly elliptical orbit takes it as far as 49 astronomical units from our star, and as close as 30.


Pluto the planet was discovered on February 18, 1930 by astronomer Clyde Tombaugh at the Lowell Observatory in Flagstaff, Arizona. It was named later that year by Venetia Burney, an 11-year-old girl in England. She first learned of the new, nameless planet from her grandfather, who mentioned it while reading the newspaper. Burney was interested in Greek and Roman mythology at the time, and she immediately suggested Pluto.

Her grandfather was impressed, and mentioned it in a note to a friend of his, who taught astronomy at Oxford. The astronomy professor passed word to Lowell Observatory, and the astronomers there took an immediate liking to it. It helped that the first two letters of Pluto are the initials of the observatory's (then dead) founder, Percival Lowell. Note that Burney did not get the name from the Disney dog. Just the opposite: The dog, which premiered the same year as Pluto was discovered, was likely named by Walt to ride the planet's publicity wave. Scientists and cartoonists alike have yet to explain how the then-unseen planet and dog ended up being more or less the same color.


Space elevators are a science fiction staple, and advances in carbon nanotubes have made their prospects, if not likely, then certainly possible. The idea is to bring a large object such as an asteroid into a geostationary orbit at Earth's equator, and essentially connect that object and the Earth with a cable or structure. You could then lift things into orbit without the need for rockets. According to Runyon, the unique orbital characteristics of Pluto and Charon create interesting opportunities for the very, very distant future of engineering.

The two worlds are tidally locked. Charon's orbit is precisely the same duration as Pluto's rotation, meaning that if you stood on Pluto's surface, the moon would hover over the same spot, never rising or setting. "Because they are binary, tidally locked, literally orbiting each other in a perfect circle, you could build a space elevator that goes from one planet to the other, from Pluto to Charon," Runyon tells Mental Floss. "And it would touch the ground in both places, physically linking them. And you could literally climb a ladder from one to the other."


In 2015, the New Horizons spacecraft arrived at the Pluto system and turned a few pixels into a real world. The famous first image released by NASA is not a straight-on shot from Pluto's side, with the top being the North Pole and bottom being the south. It is in reality a view from Pluto's higher latitudes, looking down. (The heart, in other words, is quite higher up on the planet than the picture suggests.) Because New Horizons was a flyby craft and not an orbiter, planetary scientists don't know what 40 percent of the planet looks like.


The traditional classroom solar system model of a light bulb as the Sun and planets on wires extending from it represents a nice flat orbital plane known as the ecliptic, and for most of the solar system, that's pretty close to the truth. But not for Pluto, which has a 17-degree inclination relative to the ecliptic. Moreover, like Uranus, its rotation is tipped on its side, and it rotates backward (east to west). No one knows why, according to Runyon. "It's probably the result of an ancient impact," he says. "One not strong enough to disrupt planet but enough to tip on its side. This might have been the Charon-forming impact, which would be similar to how our moon is formed."


Astronomers have long known that Pluto has an atmosphere. During stellar occultations (that is, when it moves in front of stars), astronomers can see the star dim, and then completely go out, and then reappear dimly, and then return to its full brightness. That dimming is caused by the planet's atmosphere. Astronomers are furthermore able to track its density over time. Because Pluto is so far from the Sun, the ice on its surface sublimates: It goes from a solid directly to a gas without first becoming a liquid. When Pluto reached perihelion (as close to the Sun as its gets in an orbit) in 1989, the expectation was that the atmosphere would begin to collapse entirely: that it would freeze out, basically, and fall to the surface.

"A good comparison is when it snows on Earth," says Runyon. "Snow is basically the water vapor in the atmosphere freezing out and falling to the surface, leaving Earth's atmospheric density slightly lower than it would be otherwise." In Pluto's case, the thought was that the complete atmosphere would freeze out and fall onto the planet's surface.

It didn't happen. "Pluto's atmosphere is denser than we thought it would be," Runyon explains. "Even now as it's moving farther from the Sun, its atmosphere is puffier than ever." One model says that while the atmosphere does thin as ices fall to the surface, it never completely freezes and falls.


Scientists on the New Horizons team didn't expect to see Pluto's atmosphere during the flyby. "When we spun New Horizons around after closest approach and looked back at Pluto—being basically backlit from the Sun—we could see the atmosphere," he says. "We knew we'd be able to detect it, but to see it, and to see that the sunrise and sunset on Pluto is this ethereal electric blue—nobody anticipated that." Runyon says that the New Horizons found discrete atmospheric layers that could be traced for hundreds of miles. "Pluto has what's called a stably stratified atmosphere. The coldest layer is on the bottom and it gets warmer as you go up," he says.

"In science, you test hypotheses, but before you can even do that you need to figure out what's there in the first place. To me, that's the most exciting part of science. The most exciting part of space exploration is to see something for the first time, and that's what New Horizons was. And to turn around and look back at the Sun and see a beautiful atmosphere with the gorgeous layers through it is just astonishing," he says. 


More from mental floss studios