CLOSE
iStock
iStock

Why Do Doctors Still Carry Pagers?

iStock
iStock

Seeing a pager in today’s technologically evolved world is like spotting a hand-cranked car engine. In an era where the cell phone has replaced virtually every item in an old Radio Shack catalog, what’s the point of sticking with a device that hasn’t evolved in 20-odd years?

For physicians, the answer is that an anachronistic messaging system may still be best. Even though pager use has dropped from 61 million users in 1994 to less than six million today, hospital employees are helping to keep this seemingly redundant device from obsolescence for two reasons. In an urgent-care situation, they may be more reliable than cell phone reception. Second, hospitals are in no hurry to upgrade telecommunications.

“The feeling has been that in hospitals where the walls are shielded due to MRIs, cells phone aren’t universal,” says Fred Pelzman, M.D., an internist affiliated with New York-Presbyterian Hospital. “And hospitals will just tell you, ‘We use pagers.’ Cost is probably a factor in that.”

By some estimates, more than 90 percent of hospitals in the country use a telecommunications system based around pagers. Typically, a patient, nurse, or physician will phone a number designated for an urgent response; a dispatch center will take the message, then contact the on-call physician. The physician gets a page and returns the call.

It sounds inefficient, and it is. One survey shows that doctors waste up to 45 minutes a day using a relay system. But according to Pelzman, having a dedicated cell phone for messages wouldn’t be quite the same. “You have a pager when a patient is unstable. When a pager goes off, your instinct is to immediately respond. I don’t know you’d get that same kind of jolt if someone left a voicemail.” Compared to cell phones, pagers don’t need recharging—only batteries that need to be changed every few months. They also can be relied upon in cases of a natural disaster cutting off cell towers because they don't use over-crowded mobile phone networks.

Some hospitals are exploring alternative messaging systems like Vocera, a voice-operated badge that allows for near-instant consultations. But for Pelzman and many physicians, the distinctive beep of a pager would be a hard stimulus to leave behind. “When my pager goes off in the middle of the night, I’m wide awake,” he says. “It’s ingrained in my DNA.”

nextArticle.image_alt|e
iStock
arrow
science
8 Unexpected Activities People Have Done in MRI Scanners for Science
iStock
iStock

In medicine, magnetic resonance imaging (MRI) uses powerful magnetic fields and radio waves to show what's happening inside the body, producing dynamic images of our internal organs. Using similar technology that tracks blood flow, functional magnetic resonance imaging (fMRI) scans can show neuroscientists neural activity, indicating what parts of the brain light up when, for instance, a person thinks of an upsetting memory or starts craving cocaine. Both require staying within a massive MRI machine for the length of the scan.

There's some controversy over how scientists interpret fMRI data in particular—fMRI studies are based on the idea that an increase of blood flow to a region of the brain means more cellular activity there, but that might not be a completely accurate measure, and a 2016 report found that fMRI studies may have stunning rates of false positives.

But we're not here to talk about results. We're here to talk about all the weird, weird things scientists have asked people to do in MRI machines so that they could look at their brains and bodies. From getting naked to going to the bathroom, people have been willing to do some unexpected activities in the name of science. Here are just a few of the oddest things that people have done in scanners at the behest of curious researchers.

1. SING OPERA

Researchers once invited world-famous opera singer Michael Volle to sing inside an MRI at the University of Freiburg in Germany. The baritone sang a piece from Richard Wagner's opera Tannhäuser as part of a 2016 study on how the vocal tract moves during singing at different pitches and while changing volume. The study asked 11 other professional singers with different voice types to participate as well. They found that the larynx rose with a singer's pitch, but got lower as the song got louder, and that certain factors, like how open their lips were, correlated more with how loud the singer was than how high they were singing. The scientists concluded that future research on the larynx and the physical aspects of singing should take loudness into consideration.

That study wasn't the first to take MRI images of singers. In 2015, researchers at the University of Illinois demonstrated their technique for recording dynamic MRI imaging of speech using video of U of I speech specialist Aaron Johnson singing "If I Only Had a Brain" from The Wizard of Oz.

2. REACT TO ROBOT-DINOSAUR ABUSE

Stills of a video in which a robot gets petted or beaten by a human
Stills from the videos participants watched of robot dinosaurs being treated kindly or unkindly.
Rosenthal-von der Pütten et al., Computers in Human Behavior (2014)

To test whether or not humans can feel empathy with robots for a 2013 study, researchers put participants into an fMRI machine and made them watch videos of humans and robotic dinosaurs. The videos either included footage of the human or robot being stroked or tickled, or the subject being beaten and choked. The brain scans showed similar activity for people viewing both videos, suggesting that people might be able to feel similar empathy for robots as for people.

3. PLAY VIDEO GAMES WITH A MEAN-SPIRITED A.I.

Two brain scans
Eisenberger et al., Science (2003)

To see whether the brain responds to emotional pain in similar ways to physical pain, researchers asked participants in a 2003 study to experience social rejection within an fMRI machine. During the scans, participants played a virtual ball-tossing game against two other players—whom they believed to be other study participants in other scanners—by watching a screen through goggles and pressing one of two keys to toss the ball to one of the other players. They were actually playing against a computer that was programmed to eventually exclude the human player. At some point during the game, the computer-controlled players stopped throwing the human player the ball, causing them to feel excluded and ignored. The researchers found that the excluded study subjects showed brain activation in regions similar to the ones seen in studies of physical pain.

4. POOP

Watching people poop through MRI imaging is a surprisingly common medical technique. It's called magnetic resonance defecography. Doctors use it to diagnose issues with rectal function, analyzing how the muscles of the pelvis are working and the cause of bowel issues. The scan involves having ultrasound jelly and a catheter inserted into your butt, donning a diaper, and crawling inside an MRI scanner. Then, on command, you clench your pelvic muscles in various ways as ordered by the doctor, eventually resulting in pooping out the ultrasound jelly and whatever else you might need to evacuate. No pressure.

5. HAVE SEX …

MRI of a woman before, pre-, and after orgasm
MRI images of a woman at rest, in a pre-orgasmic phase, and 20 minutes after orgasm (L–R)
Schultz et al. in BMJ, 1999

Scientists have also recorded MRI body scans of couples having sex. In the late '90s, Dutch researcher Pek Van Andel and his colleagues at the University Hospital Groningen asked eight couples to come into their lab on a Saturday and have sex in the tube of an MRI scanner in order to analyze how genitals fit together during heterosexual intercourse. Despite the surroundings, they apparently had a fine time. "The subjective level of sexual arousal of the participants, men and women, during the experiment was described afterwards as average," the study noted.

Meanwhile, other researchers are trying to capture scientific images of sex in different, sometimes even more awkward ways. For her 2008 book Bonk: The Curious Coupling Of Sex And Science, science writer Mary Roach and her husband had sex in a lab at University College London while a researcher stood next to them and held an ultrasound wand to her abdomen.

6. … AND HAVE ORGASMS

Scan of a woman's brain during orgasm
Wise et al., The Journal of Sexual Medicine (2017)

Scientists still don't know all that much about how orgasms work, so various studies have asked participants to come into the lab, lay down in an fMRI scanner, and stimulate themselves to orgasm. (A reporter at Inside Jersey went to Rutgers to take part in the university's orgasm research herself in 2010. She brought her own sex toy, but the lab was kind enough to provide the lube.)

Over the course of their work, Rutgers researchers have found that when people bring themselves to orgasm within an fMRI machine, it activates more than 30 brain systems, including ones that you wouldn't think would be involved in getting off, like the prefrontal cortex, which is associated with problem solving and judgment.

7. COMPOSE MUSIC

A musical score with just a few notes on it
Lu et al., Scientific Reports (2015)

Singers aren't the only music professionals to get inside an fMRI machine for science. For a study published in 2015, 17 young composers were asked to create a piece of music while Chinese researchers examined their brain activity. While all of them played the piano, they were asked to compose a piece for an instrument none of them know how to play—the zheng, a traditional Chinese string instrument. They were given a musical staff with just a few introductory notes already written as inspiration and asked to come up with something from there. As soon as they exited the scanner, they wrote down the notes they had imagined during the imaging process. The researchers found that the composers' visual and motor cortex showed less activity than usual, the opposite of what researchers have seen in studies of musical improvisation.

8. HAVE AN OUT-OF-BODY EXPERIENCE

Four brain scans with different areas of the brain lit up in red, yellow, and orange
Activated portions of the brain during an out-of-body experience
Smith and Messier, Frontiers in Human Neuroscience (2014)

In a 2014 study, psychologists at the University of Ottawa recruited an undergraduate student who reported that she could have out-of-body experiences at will to do so within the confines of an fMRI scanner.

"She was able to see herself rotating in the air above her body, lying flat, and rolling along with the horizontal plane," the researchers wrote. "She reported sometimes watching herself move from above but remained aware of her unmoving 'real' body."

She entered the scanner six times, reporting out-of-body experiences that included feeling as if she were above her body and spinning or rocking side-to-side. The researchers found that the experience activated regions of her brain associated with kinesthetic imagery, the feeling of visualizing movement (as athletes often do during training and competitions, for instance), and a deactivated the visual cortex.

nextArticle.image_alt|e
iStock
arrow
Health
New App Uses Crowdsourcing to Find You an EpiPen in an Emergency
iStock
iStock

Many people at risk for severe allergic reactions to things like peanuts and bee stings carry EpiPens. These tools inject the medication epinephrine into one's bloodstream to control immune responses immediately. But exposure can turn into life-threatening situations in a flash: Without EpiPens, people could suffer anaphylactic shock in less than 15 minutes as they wait for an ambulance. Being without an EpiPen or other auto-injector can have deadly consequences.

EPIMADA, a new app created by researchers at Israel's Bar-Ilan University, is designed to save the lives of people who go into anaphylactic shock when they don't have EpiPens handy. The app uses the same type of algorithms that ride-hailing services use to match drivers and riders by location—in this case, EPIMADA matches people in distress with nearby strangers carrying EpiPens. David Schwartz, director of the university's Social Intelligence Lab and one of the app's co-creators, told The Jerusalem Post that the app currently has hundreds of users. Registered users are required to have an epinephrine prescription, and must apply (by emailing abigailk@mda.org.il) to join the community.

EPIMADA serves as a way to crowdsource medication from fellow patients who might be close by and able to help. While it may seem unlikely that people would rush to give up their own expensive life-saving tool for a stranger, EPIMADA co-creator Michal Gaziel Yablowitz, a doctoral student in the Social Intelligence Lab, explained in a press release that "preliminary research results show that allergy patients are highly motivated to give their personal EpiPen to patient-peers in immediate need."

EpiPen is easy to use, so even though fellow allergy sufferers may not have medical training, it's a relatively low-risk venture to ask them to treat a stranger the same way they'd treat themselves. The tool could be especially useful for children, who may be most likely to forget their EpiPens.

The app is currently available only in Israel, but the idea could be applicable across the world, for multiple life-threatening conditions. The researchers are collaborating on similar patient-to-patient apps elsewhere, including one in Philadelphia connecting people who carry the opioid overdose reversal medication naloxone.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios