To Boldly Go: The Science Behind Pooping in Space


What Mike Mullane remembers most clearly about having his first bowel movement in space is the blast of cold air greeting his exposed rectum. Over the course of three week-long NASA shuttle missions in the 1980s—two for Discovery, one for Atlantis—Mullane was forced to answer nature's call six or seven times in zero gravity. Each time, he would have to strip naked, close a flimsy curtain around a titanium commode, position his buttocks to form a perfect seal around a 4-inch opening, and then follow a checklist posted nearby to make sure no fecal particles escaped into the deck—all while his sphincter insisted on clamping shut to escape the freezing temperatures.

"It was a complex operation," Mullane tells Mental Floss. "On Earth, I'm fast. My wife is amazed I can be in and out of the bathroom in one minute for a number two. On the shuttle, it would take 30."

While the industrial toilet was a far cry from five-star hotel room seat warmers and bidets, it also improved by magnitudes the ordeal of emptying one's intestines in zero gravity. Prior to 1972, the men of the Gemini and Apollo missions braved poop bags that they would stick to their rear ends, then manually knead the contents with an antibacterial solution so the gases wouldn't detonate the collection; more than one crew has been terrorized by rogue turds hovering in the air.

Coming up with a practical way of replicating the earthbound poop experience took many years, many engineers, and a whole lot of ingenuity. While few explorers like to discuss it, taking a space dump is its own kind of heroism.

Consider one early—and discarded—solution for waste collection in space, which someone dubbed the "sh*t mitt." Donald Rethke likens it to "those long rubber gloves veterinarians use for insemination." The idea, he tells Mental Floss, was that the astronaut could poop in their own hand and then turn the glove inside-out, creating instant containment of the feces.

Now 80, Rethke is a retired engineer from Hamilton-Standard, a NASA subcontractor working through Northrop Grumman that spent decades refining or pioneering life-support systems for space explorers. Rethke, who embraces his industry nickname of "Doctor Flush," says that handling poop simply wasn't much of a concern due to the brief trips taken by pioneering astronauts: They could just go before they left. But as missions grew longer, it became necessary to address personal waste—urine and bowel movements—without dealing with the discomfort of diapers.

A NASA training commode
A training toilet with a camera positioned inside so astronauts can learn how to best angle their buttocks.
National Geographic, YouTube

For the 1965–66 Gemini excursions, which were planned to prove humans could survive for several days or weeks in space, astronauts were told to use a condom-like sheath that would direct urine into a bag. For feces, they were to use a pouch with a 1.5-inch opening and an adhesive strip around the edge to help prevent fecal matter from escaping. A fellow crew member would be told to stand by and watch to make sure no waste escaped into the capsule.

"It kind of looked like an upside-down top hat," Mullane says. Though they pre-dated his missions, they were on board his shuttles in case of equipment failure. "We never had to use them, thank God."

But the occupants of Gemini and Apollo did, and most found it unpleasant for reasons unrelated to crapping in a bag. When gravity is lacking, surface tension becomes a dominant force. So urine and feces that would separate from the body on Earth thanks to gravity tend to cling to the skin's surface in space.

"If you stick your finger into a glass of water and lift it up, water flows off," Mullane explains. "But in weightlessness, the attraction of the molecules of the fluid will pull it into a ball. If you leave fluid alone, it will form a perfect sphere. Touch it, and will stick to you."

The same goes for poop. The bags had tiny finger covers built in so users could flick and scrape errant flecks away from their cheeks. Then they'd mix in a chemical to kill the bacteria so the gases wouldn't expand in the sealed bag and create an explosive biohazard.

"Well, it's in a small, like a ketchup, a little plastic container like you find ketchup in in restaurants, in a cafeteria or something, it's like that," Apollo astronaut Russell Sweickhart told a reporter in 1977. "You tear the slit across the top, being careful not to squeeze it so the stuff comes out, and then you drop that into the fecal container, and then seal the fecal container. Then you squeeze it through the, you know, externally, you know, which forces it out of the container, and then you mix it by massaging the fecal bag. It's really fun when it's still warm."

If everything went well, it was merely disgusting. If it didn't, as the following transcript excerpt from the 1969 Apollo 10 mission demonstrates, it could be highly disruptive:

Tom Stafford: Give me a napkin quick. There's a turd floating through the air.

John Young: I didn't do it. It ain't one of mine.

Gene Cernan: I don't think it's one of mine.

Stafford: Mine was a little more sticky than that. Throw that away.

Young: God Almighty.

"When the Apollo astronauts came back," Rethke says, "they wanted sit-down toilets."

A look at the ISS bathroom
The "orbital outhouse" inside the International Space Station.

While modesty may not have been an achievable goal, astronauts needed some semblance of routine. (Some shuttles were equipped with kitchen tables, even though nothing in zero gravity could be perched on one.) But the comforts of a domestic commode had little application in space. No water could be used: It would run everywhere. And unlike gravity-assisted toilets, a shuttle john would have to address the surface tension issue that enticed poop to come out in curls instead of straight down, mashing itself against the skin.

The solution, according to Rethke, was gentle suction. "Or, as I like to call it, air entrainment," he says. In its simplest form, it's getting the poop Hoovered away from your bottom using air flow as a substitute for gravity.

Rethke says the idea was already on the table courtesy of General Electric (GE) when Hamilton-Standard began working on a zero gravity toilet, and that his job was one of refinement that lasted through the 1980s and 1990s. "The concept of separating solids from the body was already in the bag, no pun intended. It was just the best way. Most of my effort was how to do that economically."

NASA had previously toyed with a variety of designs, including one 1971 model that was mounted vertically on a wall to conserve space. Another took the feces and pulped it, a model not unlike evacuating into a blender. This, engineers realized, created the potential for fecal "dust," or powdered particles of poop, that could contaminate the cabin of spacecraft. By using air entrainment, hardly anything could escape the bowl—and if it did, it wouldn't be atomized to the point of being a biological hazard. Instead, a fan and vacuum system was used to encourage the waste to settle at the bottom of the waste tube.

Air entrainment made one frustrating demand of its users: proper anal positioning. With a 4-inch opening compared to a conventional toilet's 18 inches, astronauts had to align themselves up perfectly in order to avoid any escaping feces. To train astronauts heading for space, NASA set up a commode with a camera mounted inside. (You were not expected to make a deposit.) Users could gauge their perch based on freckles or other skin marks in relation to the seat. Properly docked, they could poop on target, but it took practice.

"It's hard to know where your a-hole is when the hole is that narrow," Mullane says.

Minor complaints aside, NASA's work was ready in time for the 1973 debut of Skylab, the first space station, and the 1981 launch of Columbia, the first shuttle to reach space. After realizing the pulverizing model wasn't going to work due to the fecal dust issue and other malfunctions that led to problems on 10 of the shuttle's first 11 voyages, a redesigned system less prone to clogging was introduced in the mid-1980s.

Urinating, according to Mullane, was never any big deal. Men and women use a form-fitting cup and gentle suction to empty their bladder. "Pretty simple," he says. "But solid waste, that was kind of like going in a camper toilet."

On the Atlantis and Discovery, the space commode had foot rests and thigh straps so astronauts could remain secure to the seat while doing their business. They'd typically opt to strip naked in the event any soiling occurred. To the right was a hand lever; pushed forward, it slid open the tube underneath their buttocks. "You never wanted to open that before sitting on it," Mullane says. Doing so could release the previous user's residual fecal matter into the air.

Once Mullane was strapped in, he would open the tube cover and feel the rush of cold air hit his rear. The air moved 360 degrees while a fan underneath—loud enough to mask sounds of elimination—pulled waste away from the body and into a container that would store the matter until the shuttle returned. Toilet paper would go in a separate bag. By the time Mullane got dressed, cleaned the toilet's edges, and exited, 30 minutes had passed.

Surprisingly, the intimate size of the shuttle didn't contribute to any fragrant evidence. "They did a really good job of filtration," Mullane says. "You never smelled anything."

Rethke improved on this in the early 1990s by compacting the discarded feces at the bottom, reducing the need for storage space. (To make sure it would stay sealed, Rethke once kept a feces-filled container in his office for a year.)

Small tweaks aside, the space toilet doesn't follow the update schedule of, say, an iPhone. What Rethke redesigned and what Mullane used is, by and large, what's still in use on the International Space Station (ISS) today. But instead of bringing waste back, it's discarded so it burns up in the atmosphere.

Future movements may prove more difficult to handle. With the advent of long-duration travel, possibly to Mars, on the horizon, space exploration will have to deal with the issue of waste management when there's virtually no chance of Earthbound assistance.

"When toilets fail [on Earth], it's a real pain," Mullane says. "Just imagine that on Mars. I have no idea how they're going to do that."

Someone might. In early 2017, the HeroX platform crowned a winner in its Space Poop Challenge, which crowdsourced ways to handle waste in space when an explorer is in a spacesuit and away from a fixed toilet for long periods. The winning idea—a suit hatch that can be used to insert inflatable bedpans and diapers—earned inventor Thatcher Cardon a $15,000 prize. If it works, it'll assist in an integral part of exploring beyond our atmospheric borders. In space, everyone needs to go.

Additional Sources: Riding Rockets: The Outrageous Tales of a Space Shuttle Astronaut

NASA's Hubble Telescope Captures the Lagoon Nebula's Explosive Core

Born in 1990, NASA's Hubble Space Telescope could be classified as a millennial. And like many millennials, its mission is to snap envy-inducing photos of its stunning surroundings. (Plus, with 6 million Twitter followers, it doesn't shy away from social media.)

The latest images Hubble captured, released by NASA in celebration of the telescope's 28th anniversary, do not disappoint. In a flyover video, the Lagoon Nebula's phantasmagoric splendor is revealed for all to see. This stellar nursery—an area where gas and dust contract inside a dense nebula, allowing new stars to be formed—is located 4000 light years away from Earth.

The vivid colors captured on camera can be explained by the gases present in those areas. Blue denotes glowing oxygen, yellow is starlight, red is glowing nitrogen, and dark purple is a mixture of hydrogen, oxygen, and nitrogen.

About 30 seconds into the video, a close-up view of one particularly bright star can be seen. That's Herschel 36, a monster star at the "roiling heart" of the Lagoon Nebula. It's only 1 million years old, making it a whippersnapper by celestial standards. NASA estimates it could live for another 5 million years, based on its mass.

What it lacks in age, it makes up for in size and power. It's 200,000 times brighter than our Sun and nearly nine times its diameter. It also generates "powerful ultraviolet radiation and hurricane-like stellar winds, carving out a fantasy landscape of ridges, cavities, and mountains of gas and dust," according to NASA.

Those "curtain-like sheets" you see in the video are the result of massive amounts of radiation and strong winds pushing the dust away.

See below for another view of the Lagoon Nebula. The image on the left was taken in visible light, and the one on the right was taken in infrared light.

NASA, JPL-Caltech
It's Official: Uranus Smells Like Farts
NASA, JPL-Caltech
NASA, JPL-Caltech

Poor Uranus: After years of being the butt of many schoolyard jokes, the planet's odor lives up to the unfortunate name. According to a new study by researchers at the University of Oxford and other institutions, published in the journal Nature Astronomy, the upper layer of Uranus's atmosphere consists largely of hydrogen sulfide—the same compound that gives farts their putrid stench.

Scientists have long suspected that the clouds floating over Uranus contained hydrogen sulfide, but the compound's presence wasn't confirmed until recently. Certain gases absorb infrared light from the Sun. By analyzing the infrared light patterns in the images they captured using the Gemini North telescope in Hawaii, astronomers were able to get a clearer picture of Uranus's atmospheric composition.

On top of making farts smelly, hydrogen sulfide is also responsible for giving sewers and rotten eggs their signature stink. But the gas's presence on Uranus has value beyond making scientists giggle: It could unlock secrets about the formation of the solar system. Unlike Uranus (and most likely its fellow ice giant Neptune), the gas giants Saturn and Jupiter show no evidence of hydrogen sulfide in their upper atmospheres. Instead they contain ammonia, the same toxic compound used in some heavy-duty cleaners.

"During our solar system's formation, the balance between nitrogen and sulfur (and hence ammonia and Uranus’s newly detected hydrogen sulfide) was determined by the temperature and location of planet’s formation," research team member Leigh Fletcher, of the University of Leicester, said in a press statement. In other words, the gases in Uranus's atmosphere may be able to tell us where in the solar system the planet formed before it migrated to its current spot.

From far away, Uranus's hydrogen sulfide content marks an exciting discovery, but up close it's a silent but deadly killer. In large enough concentrations, the compound is lethal to humans. But if someone were to walk on Uranus without a spacesuit, that would be the least of their problems: The -300°F temperatures and hydrogen, helium, and methane gases at ground level would be instantly fatal.