25 Things You Didn't Know About the World's Oceans

iStock
iStock

In 2008, the United Nations recognized World Oceans Day on June 8 as a time to celebrate the immense bodies of water that make up roughly 70 percent of the surface of the Earth. The goal of the day is to promote conservation efforts and engage activists in preserving these five crucial areas—the Pacific, Atlantic, Indian, Arctic, and Southern (Antarctic) Oceans—and their inhabitants.

If you don’t know much about the deep blue sea—like why it's not actually blue, for example—check out 25 facts we’ve culled about the world’s largest and most fascinating real estate.

1. THE SUN GIVES IT THAT BLUE TINT.

A look at calm, blue ocean waters
iStock

One of the most indelible features of the oceans is the deep blue waters that are continually churning, rolling, and coming in waves. The color is the result of the sun’s red and orange wavelengths being absorbed by the surface and its blue wavelengths penetrating deeper, giving way to a blue tint. And because those wavelengths can travel further down, the ocean will tend to appear more blue the lower you go. Why isn't water in a glass blue when you're sitting outdoors? There aren't enough molecules to absorb the light.

2. THEY'RE KEEPING THE INTERNET ONLINE.

If you could catch sight of the miles of cable criss-crossing the world’s oceans, it would look like a giant, submerged web. Communications companies maintain international connections by feeding cables down to (hopefully) flat surfaces on the ocean floor. Some require shark-proof layers to prevent predators from biting into your Netflix stream (although the danger of sharks has been vastly overhyped—human activity is a far bigger threat).

3. THE DEEPEST PART IS REALLY, REALLY DEEP.

The Mariana Trench is considered to be the deepest part of the world’s oceans. Inside of the Trench is a valley known as Challenger Deep that extends roughly seven miles (36,070 feet) below the surface. For comparison, the entirety of Mount Everest—at 29,029 feet—could easily be accommodated there. Manned explorations haven’t gone any further than 35,797 feet below the surface, a record set by two oceanographers in 1960. In 2012, filmmaker James Cameron explored roughly the same depths in a solo mission. It’s considered the deepest point on Earth.

4. SOUNDS CAN TRAVEL TO THE DEEPEST EXPLORED AREAS.

Researchers once lowered an underwater microphone called a hydrophone to almost the bottom of the Mariana Trench to see what sounds—if any—it might pick up. After feeling relieved the immense pressure at those depths—about 8 tons per square inch—didn’t implode the equipment, they discovered that sound from earthquakes, passing baleen whales, and other ambient noise was audible.

5. LAKES AND RIVERS LIE BENEATH THE SURFACE.

Some surfaces in the ocean feature sights that don’t seem to make any logical sense—rivers and lakes, some of them miles long, can stretch across the ground even though they’re submerged. How can a body of water exist in a body of water? Water from under the sea floor seeps up and dissolves salt layers, forming depressions. Because the water in the depression is more dense than the water all around it, it settles into the depression and forms a distinct pool.

6. THERE ARE 20 MILLION TONS OF UNTOUCHABLE GOLD IN THE OCEANS.

If you’re hoping to find a fortune in gold prospecting, don’t expect the ocean to cooperate. You may be able to plunder a shipwreck, but you won’t be able to collect much of the 20 million tons of gold estimated to exist in the water. That’s because it’s so diluted that it’s measured in parts per trillion. One liter of seawater might net you a 13-billionth of a gram.

7. WE KNOW MORE THAN YOU MIGHT EXPECT.

A dolphin swims in the ocean
iStock

You might see mentions that we’ve "mapped" more of Mars than we have the Earth’s oceans, but that’s not quite true. Oceanographers have been able to visualize almost 100 percent of the ocean floors, albeit in a resolution that makes it difficult to spot a lot of detail. In that sense, images of Mars and other planets have been able to offer more information because they’re not covered in water that can block radar. Although we haven't explored the vast majority of the oceans first-hand, technology has enabled us to have a rough idea of their layouts.

8. THE BIGGEST WATERFALL ON EARTH IS IN THE ATLANTIC.

Putting Niagara Falls to shame is the Denmark Strait, a waterfall below the Atlantic Ocean that, in terms of water volume, is the equivalent of 2000 of the world’s most notable waterfalls, with cascading liquid pouring 11,500 feet down. The Strait’s cold water on the eastern side is more dense than the warm fluid coming from the west. When the two waters mix, the colder supply sinks, creating a waterfall.

9. WE DON'T KNOW ANYTHING ABOUT MOST OF THE MARINE LIFE.

An octopus is photographed by an ocean photographer
iStock

Size and water pressure conspire to limit our exploration of the oceans, so much so that it’s estimated we’ve identified only one-third of the potential marine life lurking beneath the surface. It’s possible most of those are smaller organisms, but it’s likely that some whales and other mammal species have yet to be discovered. We’re making progress, though: An average of 2000 new species are described each year.

10. MAGELLAN NAMED THE PACIFIC OCEAN.

When Ferdinand Magellan crossed the Atlantic beginning in 1519, he eventually found his way to another body of water—what he dubbed the Pacific, or peaceful, ocean due to the calm surface. He didn’t know it at the time, but the Pacific would eventually be recognized as the largest ocean on the planet at 59 million square miles.

11. THE MOST REMOTE PLACE ON EARTH IS IN THE SOUTH PACIFIC.

Point Nomo is illustrated
Courtesy National Oceanic and Atmospheric Administration

Known as Point Nemo, the area is roughly 1000 equidistant miles away from the coasts of three neighboring islands and so remote that astronauts are often closer to any theoretical occupants than anyone on dry land.

12. MOST VOLCANIC ERUPTIONS ARE UNDERWATER.

Up to 80 percent of volcanic eruptions go unnoticed by land-dwellers. That’s because they’re erupting underwater. An estimated one million volcanoes—some extinct and some very active—spew molten hot lava. Despite the heat, creatures can still be found near their superheated vents. Researchers believe these areas harbor several undiscovered species that are invulnerable to the harsh conditions, including water temperatures up to 750 degrees Fahrenheit.

13. THERE MAY BE BILLIONS IN SUNKEN TREASURE DOWN IN THE DEEP.

A sunken ship sits on the ocean floor
iStock

It’s impossible to offer an accurate estimate of how many shipwrecks and accompanying treasures are lurking in the oceans, but a few people have made an honest effort of it. The National Oceanic and Atmospheric Administration (NOAA) thinks a million sunken ships lurk in the dark; others peg the total value of the unrecovered treasures at $60 billion. So why don’t we hear more stories of watery grave-robbing? Because governments or private parties are likely to make a legal claim to those funds, making an expensive expedition for treasure a gamble at best.

14. THEY KEEP US BREATHING.

Forget all the beauty and wonder of the world’s oceans: At the bare minimum, they’re responsible for supplying us with oxygen. Oceans produce 70 percent of the oxygen supply in the atmosphere thanks to marine plants releasing it as a byproduct of photosynthesis. One phytoplankton, Prochlorococcus, is estimated to be solely responsible for one in every five breaths a human will take.

15. "DEAD ZONES" CAN BE BARREN OF ANY LIFE.

Dark ocean waters can be devoid of life
iStock

One reason pollution is such an issue for oceans: It can rob them of the oxygen needed to support life. When run-off from waste disposal gets into the water, it can feed an overabundance of algae, which then dies, sinks, and as it decomposes, consumes the available oxygen in the water. That creates hypoxic areas, or hot spots with a lack of oxygen. If fish and other marine life don’t find a new space to dwell in, they’re toast.

16. THE FISH ARE EATING A LOT OF PLASTIC.

With over seven million tons of plastic winding up in the ocean each year, it’s inevitable that a lot of it winds up as part of an unwelcome addition to a fish’s diet. For fish in the northern Pacific, researchers at the University of California, San Diego once estimated they swallow between 12,000 and 24,000 tons every year.

17. KEEPING TROPICAL PET FISH MIGHT BE HARMING THE OCEANS.

Colorful tropical fish swim in the water
iStock

Those aquariums in pet stores and dental offices might remind you of marine life, but they might also be having a negative impact. When tropical fish are caught, fishermen use sodium cyanide to make them float out of the reef for easy scooping. While the hope is that it just stuns them, the residue of the chemical can bleach coral reefs and kill scores of other fish.

18. TSUNAMI WAVES CAN REACH 100 FEET...

When waves reach shallow water near land, energy that would normally be dispersed goes up, elongating the wave. A 1958 earthquake and landslide in Alaska generated a tsunami 100 feet high and destroyed all vegetation up to 1720 feet, the largest in recorded history.

19. ...BUT THE BIGGEST WAVES ARE UNDER THE SURFACE.

Called internal waves, these water walls have been found three miles below the surface. The waves are part of water layers with different densities and can reach heights of 800 feet before collapsing. Scientists believe these massive forces can help move heat and nutrients to other areas.

20. WE'RE TRYING TO MAKE THE OCEAN DRINKABLE.

As most everyone knows, drinking salt water is perilous at best and deadly at worst. In a process called desalination, that salt is removed, leaving fresh water. But building facilities and the energy required to process water this way has traditionally been more expensive than sourcing water from potable sources.

21. THE BRISTLEMOUTH IS THE MOST ABUNDANT VERTEBRATE IN THE WORLD.

A bristlemouth snacks on a shrimp
Courtesy National Oceanic and Atmospheric Administration

Not familiar? If you saw one, you’d know. The bristlemouth is a fish a little smaller than your average human finger that has a mouth full of fangs and can glow in the dark. It’s also the most common vertebrate in the world. For comparison? Chickens could number as many as 24 billion on land, while bristlemouths are said to add up to the hundreds of trillions.

22. GIANT KELP GROWS VERY QUICKLY.

Giant kelp, or Macrocystis Pyrifera, is a type of seaweed that experiences an astonishing growth spurt. To reach its usual height of 100 feet, the species can grow up to two feet in a single day.

23. RUBBER DUCKS HAVE HELPED OUR UNDERSTANDING OF THE OCEANS.

A rubber duck floats in the water
iStock

In 1992, a shipment of bath toys was headed from China to the U.S. when the cargo ship dropped a container. More than 28,000 rubber ducks—or duckies, depending on your preference—and other play-animals were dumped into the North Pacific Ocean. Oceanographers tracked where the ducks wound up in order to better understand the water currents, with some landing ashore in Europe and Hawaii. The duck sightings didn’t ease up until the mid-2000s.

24. ANTARCTIC FISH HAVE NATURAL ANTIFREEZE.

Curious how aquatic life can survive the temperatures at the poles? Antifreeze proteins in the fish prevent ice crystals from growing, preventing their blood from being overcome by the chill and allowing it to continue flowing.

25. SEASHELLS DON'T ACTUALLY SOUND LIKE THE OCEAN.

A child holds a seashell up to her ear
iStock

Seashells have long been perceived as the iPods of the sea, tiny little devices that can mimic the static, hissing noise of the water. What they’re actually doing is acting as a resonator, or a cavity that allows sound to vibrate. By holding up the shell to your ear, you’re hearing the ambient noise around you amplified. All that whooshing air typically sounds a lot like the movement of cascading waves. If you can't make it to beach, though, it might be the next best thing.

That Sugar Rush Is All In Your Head

iStock.com/egal
iStock.com/egal

We've all heard of the "sugar rush." It's a vision that prompts parents and even teachers to snatch candy away from kids, fearing they'll soon be bouncing off the walls, wired and hyperactive. It’s a myth American culture has clung to for decades—and these days, it’s not just a kid thing. Adults are wary of sugar, too. Some of this fear is warranted—diabetes, the obesity epidemic—but the truth is, sugar doesn't cause hyperactivity. Its impact on the body isn’t an up-and-down thing. The science is clear: There is no "sugar rush.”

To find out how and why the myth started, we need to go back to well before the first World War—then pay a visit to the 1970s.

Our Complicated Relationship With Sugar

According to cultural historian Samira Kawash, America has had a long, complex, love-hate relationship with sugar. In Candy: A Century of Panic and Pleasure, Kawash traces the turn from candy-as-treat to candy-as-food in the early 20th century. At that time, the dietary recommendations from scientists included a mix of carbohydrates, proteins, and fats, with sugar as essential for energy.

Not everyone was on board: The temperance movement, for example, pushed the idea that sugar caused an intoxication similar to alcohol, making candy-eaters sluggish, loopy, and overstimulated. In 1907, the chief of the Philadelphia Bureau of Health estimated that the "appetite" for candy and alcohol were "one and the same," Kawash writes. On the flip side, other scientists suggested that sugar from candy could stave off cravings for alcohol—a suggestion that candymakers then used in their advertisements.

While the debate about sugar as an energy source raged in America, militaries around the world were also exploring sugar as energy for soldiers. In 1898, the Prussian war office became the first to commission a study on the sweet stuff—with promising results: "Sugar in small doses is well-adapted to help men to perform extraordinary muscular labor," early researchers wrote. German military experiments introduced candy and chocolate cakes as fortification for the troops, and the U.S. military added sugary foods to soldiers' diets soon after. When American soldiers returned from World War I, they craved sweets, which "propelled an enormous boom" of candy sales that has lasted to this day, Kawash wrote on her blog, The Candy Professor. American advertisers framed candy as a quick, easy source of energy for busy adults during their workday.

As artificial sweeteners moved into kitchens in the 1950s, candymakers struggled to make their products appeal to women who were watching their waistlines. One industry group, Sugar Information Inc., produced a tiny "Memo to Dieters" pamphlet in 1954 designed to fit inside chocolate boxes. "Sugar before meals raises your blood sugar level and reduces your appetite," it claimed. But by the 1970s, the sugar-positivity heyday had started to wane.

The Origins of the Sugar Rush Myth

The idea that sugar causes hyperactivity gained traction in the early 1970s, when more attention was being paid to how diet might affect behavior. One of the major figures studying the possible connection between diet and behavior was an allergist named Benjamin Feingold, who hypothesized that certain food additives, including dyes and artificial flavorings, might lead to hyperactivity. He formalized this into a popular—yet controversial—elimination diet program. Though certain sugary foods were banned from the program for containing dyes and flavorings, sugar itself was never formally prohibited. Still, thanks in part of the Feingold diet, sugar started to become the poster child for diet and hyperactivity.

It wasn't until the late 1980s that serious doubts about sugar's connection to hyperactivity began to be raised by scientists. As FDA historian Suzanne White Junod wrote in 2003 [PDF], the 1988 Surgeon General's Report on Nutrition and Health concluded that "alleged links between sugar consumption and hyperactivity/attention deficit disorders in children had not been scientifically supported." Despite "mothers' mantra of no sweets before dinner," she noted, "more serious allegations of adverse pediatric consequences … have not withstood scientific scrutiny."

A 1994 paper found that aspartame—an artificial sweetener that had also been accused of inducing hyperactivity in children—had no effect on 15 children with ADHD, even though they had consumed 10 times more than the typical amount.

A year later, the Journal of the American Medical Association published a meta-analysis of the effect of sugar on children's behavior and cognition. It examined data from 23 studies that were conducted under controlled conditions: In every study, some children were given sugar, and others were given an artificial sweetener placebo like aspartame. Neither researchers nor children knew who received the real thing. The studies recruited neurotypical children, kids with ADHD, and a group who were "sensitive" to sugar, according to their parents.

The analysis found that "sugar does not affect the behavior or cognitive performance of children." (The authors did note that “a small effect of sugar or effects on subsets of children cannot be ruled out.”)

"So far, all the well-controlled scientific studies examining the relationship between sugar and behavior in children have not been able to demonstrate it," Mark Wolraich, an emeritus professor of pediatrics at the University of Oklahoma Health Sciences Center who has worked with children with ADHD for more than 30 years and the co-author of that 1995 paper, tells Mental Floss.

Yet the myth that consuming sugar causes hyperactivity hasn’t really gone away. One major reason is the placebo effect, which can have powerful results. The idea that you or your children might feel a "sugar rush" from too much candy isn't unlike the boost you hope to feel from an energy drink or a meal replacement shake or bar (which can contain several teaspoons of sugar). The same is true for parents who claim that their kids seem hyperactive at a party. Peer pressure and excitement seem to be to blame—not sugar.

"The strong belief of parents [in sugar's effects on children's behavior] may be due to expectancy and common association," Wolraich wrote in the JAMA paper.

It works the other way, too: Some parents say they've noticed a difference in their kids' behavior once they take out most sugars from their diets. This strategy, like the Feingold diet, continues to attract interest and followers because believing it works has an impact on whether it actually works or not.

Correlation, Causation, and Caffeine

Which isn't to say there are absolutely no links between sugar consumption and poor health outcomes. A 2006 paper found that drinking a lot of sugary soft drinks was associated with mental health issues, including hyperactivity, but the study's design relied on self-reported questionnaires that were filled out by more than 5000 10th-graders in Oslo, Norway. The authors also noted that caffeine is common in colas, which might have a confounding effect.

In another study, conducted by University of Vermont professor of economics Sara Solnick and Harvard health policy professor David Hemenway, the researchers investigated the so-called "Twinkie defense," in which sugar is said to contribute to an "altered state of mind." (The phrase Twinkie defense comes from the 1979 trial of Dan White for killing San Francisco city district supervisor Harvey Milk and Mayor George Moscone. His lawyers argued that White had "diminished capacity and was unable to premeditate his crime," as evidenced in part by his sudden adoption of a junk-food diet in the months before the murders. White was convicted of voluntary manslaughter.)

In their survey of nearly 1900 Boston public high schoolers, Solnick and Hemenway found "a significant and strong association between soft drinks and violence." Adolescents who drank more than five cans of soft drinks per week—nearly 30 percent of the group—were significantly more likely to have carried a weapon.

But Solnick tells Mental Floss the study isn't evidence of a "sugar rush."

"Even if sugar did cause aggression—which we did not prove—we have no way of knowing whether the effect is immediate (and perhaps short-lived) as the phrase 'sugar rush' implies, or whether it’s a longer-term process," she says. Sugar could, for example, increase irritability, which might sometimes flare up into aggression—but not as an immediate reaction to consuming sugar.

Harvard researchers are looking into the long-term effects of sugar using data from Project Viva, a large observational study of pregnant women, mothers, and their children. A 2018 paper in the American Journal of Preventive Medicine studied more than 1200 mother-child pairs from Project Viva, assessing mothers' self-reported diets during pregnancy as well as their children's health during early childhood.

"Sugar consumption, especially from [sugar-sweetened beverages], during pregnancy and childhood, and maternal diet soda consumption may adversely impact child cognition,” the authors concluded, though they noted that other factors could explain the association.

“This study design can look at relationships, but it cannot determine cause and effect,” says Wolraich, who was not involved in the study. "It is equally possible that parents of children with lower cognition are likely to cause a greater consumption of sugar or diet drinks, or that there is a third factor that influences cognition and consumption.”

The Science of the Sugar Crash

Though the evidence against the sugar rush is strong, a "sugar crash" is real—but typically it only affects people with diabetes.

According to the National Institute of Diabetes and Digestive and Kidney Diseases, low blood sugar—or hypoglycemia—is a serious medical condition. When a lot of sugar enters the bloodstream, it can spike the blood sugar level, causing fluctuation, instability, and eventually a crash—which is called reactive hypoglycemia. If a diabetic's blood sugar levels are too low, a number of symptoms—including shakiness, fatigue, weakness, and more—can follow. Severe hypoglycemia can lead to seizures and even coma.

For most of us, though, it's rare. Endocrinologist Dr. Natasa Janicic-Kahric told The Washington Post that "about 5 percent of Americans experience sugar crash."

You're more likely to experience it if you do a tough workout on an empty stomach. "If one exercises vigorously and doesn't have sufficient intake to supplement their use of calories, they can get lightheaded," Wolraich says. "But in most cases, the body is good at regulating a person's needs."

So what you're attributing to sugar—the highs and the lows—is probably all in your head.

Yes, There Is Such a Thing as Getting Too Much Sleep

iStock.com/byakkaya
iStock.com/byakkaya

Regularly getting a good night's rest is incredibly important. While you’re sleeping, your body is sorting memories, cleaning out your brain, boosting your immune system, and otherwise recovering from the day. But there is such a thing as too much of a good thing: According to Popular Science, it's possible to sleep too much.

It's hard to say exactly how much sleep you should be getting each night, but a new observational study of more than 116,000 people across 21 countries finds that sleeping nine or more hours a night is correlated with a higher mortality risk. The sweet spot for healthy sleep habits, according to this data, seems to be six to eight hours each night. (Even if part of that time comes from daytime naps.)

The new paper published in the European Heart Journal examined data from the Prospective Urban Rural Epidemiology study, followed individuals between the ages of 35 and 70 across the world, some of whom lived in high-income countries like Canada and Sweden; others of whom lived in countries considered middle-income, like Argentina and Turkey; and others who lived in countries considered to be low-income like Bangladesh and Pakistan.

Over the course of an average 7.8 years, study participants answered follow-up questions about what time they went to bed and got up, and whether they napped and for how long. They also answered general health questions about things like exercise rates, dietary patterns, and weight. The researchers then collected medical records and death certificates to track whether the subjects had major cardiac events (like heart attacks) or died during the study period.

The researchers found both sleeping too much and sleeping too little to be associated with a higher likelihood of dying before the study was through. Across the world, participants who got less than six hours a day or more than eight hours a day were more likely to experience major cardiac events than participants who slept between six and eight hours a night. When the researchers adjusted the results for age and sex, they still found sleep duration to be a significant predictor of heart issues and all-cause mortality.

While adjusting for factors like physical activity, BMI, and diet did change the results a bit, the basic pattern—a J-shaped curve showing higher risk for short sleepers, low risk for moderate sleepers, and even higher risk for very long sleepers—was the same. While previous research has suggested that naps can be good for your health, this study found that napping was associated with worse outcomes if it put someone over the eight-hours-of-sleep mark in that 24-hour period.

The results may feel like vindication to people who feel terrible whenever they stay in bed too long, but there are some caveats. Sleeping nine hours a day might be a sign that someone has an underlying health condition that in itself poses a higher mortality risk, rather than the cause of the higher mortality risk in itself. The researchers tried to account for this by analyzing the data only for people who were known to have no prevalent diseases and who weren't at risk for conditions like sleep apnea and insomnia, and later by excluding people who had a cardiac event or died during the first two years of the study.

"This suggests that sleep duration per se may be associated with increased risks," they write (emphasis in the original), "but causality cannot be definitively proven from this or other observational studies (and randomized studies of different sleep durations may be difficult to conduct)." So we may never know for sure just how much risk we take upon ourselves when we settle in for a long nap.

Considering that plenty of other research suggests that around seven hours of sleep total is an ideal target, you should probably aim for that number while setting your alarm. And if getting too much shut-eye isn't your problem, check out our tips for getting back to sleep after you've woken up in the middle of the night.

[h/t Popular Science]

SECTIONS

arrow
LIVE SMARTER