CLOSE
Original image
iStock

25 Things You Didn't Know About the World's Oceans

Original image
iStock

In 2008, the United Nations recognized World Oceans Day on June 8 as a time to celebrate the immense bodies of water that make up roughly 70 percent of the surface of the Earth. The goal of the day is to promote conservation efforts and engage activists in preserving these five crucial areas—the Pacific, Atlantic, Indian, Arctic, and Southern (Antarctic) Oceans—and their inhabitants.

If you don’t know much about the deep blue sea—like why it's not actually blue, for example—check out 25 facts we’ve culled about the world’s largest and most fascinating real estate.

1. THE SUN GIVES IT THAT BLUE TINT.

A look at calm, blue ocean waters
iStock

One of the most indelible features of the oceans is the deep blue waters that are continually churning, rolling, and coming in waves. The color is the result of the sun’s red and orange wavelengths being absorbed by the surface and its blue wavelengths penetrating deeper, giving way to a blue tint. And because those wavelengths can travel further down, the ocean will tend to appear more blue the lower you go. Why isn't water in a glass blue when you're sitting outdoors? There aren't enough molecules to absorb the light.

2. THEY'RE KEEPING THE INTERNET ONLINE.

If you could catch sight of the miles of cable criss-crossing the world’s oceans, it would look like a giant, submerged web. Communications companies maintain international connections by feeding cables down to (hopefully) flat surfaces on the ocean floor. Some require shark-proof layers to prevent predators from biting into your Netflix stream (although the danger of sharks has been vastly overhyped—human activity is a far bigger threat).

3. THE DEEPEST PART IS REALLY, REALLY DEEP.

The Mariana Trench is considered to be the deepest part of the world’s oceans. Inside of the Trench is a valley known as Challenger Deep that extends roughly seven miles (36,070 feet) below the surface. For comparison, the entirety of Mount Everest—at 29,029 feet—could easily be accommodated there. Manned explorations haven’t gone any further than 35,797 feet below the surface, a record set by two oceanographers in 1960. In 2012, filmmaker James Cameron explored roughly the same depths in a solo mission. It’s considered the deepest point on Earth.

4. SOUNDS CAN TRAVEL TO THE DEEPEST EXPLORED AREAS.

Researchers once lowered an underwater microphone called a hydrophone to almost the bottom of the Mariana Trench to see what sounds—if any—it might pick up. After feeling relieved the immense pressure at those depths—about 8 tons per square inch—didn’t implode the equipment, they discovered that sound from earthquakes, passing baleen whales, and other ambient noise was audible.

5. LAKES AND RIVERS LIE BENEATH THE SURFACE.

Some surfaces in the ocean feature sights that don’t seem to make any logical sense—rivers and lakes, some of them miles long, can stretch across the ground even though they’re submerged. How can a body of water exist in a body of water? Water from under the sea floor seeps up and dissolves salt layers, forming depressions. Because the water in the depression is more dense than the water all around it, it settles into the depression and forms a distinct pool.

6. THERE ARE 20 MILLION TONS OF UNTOUCHABLE GOLD IN THE OCEANS.

If you’re hoping to find a fortune in gold prospecting, don’t expect the ocean to cooperate. You may be able to plunder a shipwreck, but you won’t be able to collect much of the 20 million tons of gold estimated to exist in the water. That’s because it’s so diluted that it’s measured in parts per trillion. One liter of seawater might net you a 13-billionth of a gram.

7. WE KNOW MORE THAN YOU MIGHT EXPECT.

A dolphin swims in the ocean
iStock

You might see mentions that we’ve "mapped" more of Mars than we have the Earth’s oceans, but that’s not quite true. Oceanographers have been able to visualize almost 100 percent of the ocean floors, albeit in a resolution that makes it difficult to spot a lot of detail. In that sense, images of Mars and other planets have been able to offer more information because they’re not covered in water that can block radar. Although we haven't explored the vast majority of the oceans first-hand, technology has enabled us to have a rough idea of their layouts.

8. THE BIGGEST WATERFALL ON EARTH IS IN THE ATLANTIC.

Putting Niagara Falls to shame is the Denmark Strait, a waterfall below the Atlantic Ocean that, in terms of water volume, is the equivalent of 2000 of the world’s most notable waterfalls, with cascading liquid pouring 11,500 feet down. The Strait’s cold water on the eastern side is more dense than the warm fluid coming from the west. When the two waters mix, the colder supply sinks, creating a waterfall.

9. WE DON'T KNOW ANYTHING ABOUT MOST OF THE MARINE LIFE.

An octopus is photographed by an ocean photographer
iStock

Size and water pressure conspire to limit our exploration of the oceans, so much so that it’s estimated we’ve identified only one-third of the potential marine life lurking beneath the surface. It’s possible most of those are smaller organisms, but it’s likely that some whales and other mammal species have yet to be discovered. We’re making progress, though: An average of 2000 new species are described each year.

10. MAGELLAN NAMED THE PACIFIC OCEAN.

When Ferdinand Magellan crossed the Atlantic beginning in 1519, he eventually found his way to another body of water—what he dubbed the Pacific, or peaceful, ocean due to the calm surface. He didn’t know it at the time, but the Pacific would eventually be recognized as the largest ocean on the planet at 59 million square miles.

11. THE MOST REMOTE PLACE ON EARTH IS IN THE SOUTH PACIFIC.

Point Nomo is illustrated
Courtesy National Oceanic and Atmospheric Administration

Known as Point Nemo, the area is roughly 1000 equidistant miles away from the coasts of three neighboring islands and so remote that astronauts are often closer to any theoretical occupants than anyone on dry land.

12. MOST VOLCANIC ERUPTIONS ARE UNDERWATER.

Up to 80 percent of volcanic eruptions go unnoticed by land-dwellers. That’s because they’re erupting underwater. An estimated one million volcanoes—some extinct and some very active—spew molten hot lava. Despite the heat, creatures can still be found near their superheated vents. Researchers believe these areas harbor several undiscovered species that are invulnerable to the harsh conditions, including water temperatures up to 750 degrees Fahrenheit.

13. THERE MAY BE BILLIONS IN SUNKEN TREASURE DOWN IN THE DEEP.

A sunken ship sits on the ocean floor
iStock

It’s impossible to offer an accurate estimate of how many shipwrecks and accompanying treasures are lurking in the oceans, but a few people have made an honest effort of it. The National Oceanic and Atmospheric Administration (NOAA) thinks a million sunken ships lurk in the dark; others peg the total value of the unrecovered treasures at $60 billion. So why don’t we hear more stories of watery grave-robbing? Because governments or private parties are likely to make a legal claim to those funds, making an expensive expedition for treasure a gamble at best.

14. THEY KEEP US BREATHING.

Forget all the beauty and wonder of the world’s oceans: At the bare minimum, they’re responsible for supplying us with oxygen. Oceans produce 70 percent of the oxygen supply in the atmosphere thanks to marine plants releasing it as a byproduct of photosynthesis. One phytoplankton, Prochlorococcus, is estimated to be solely responsible for one in every five breaths a human will take.

15. "DEAD ZONES" CAN BE BARREN OF ANY LIFE.

Dark ocean waters can be devoid of life
iStock

One reason pollution is such an issue for oceans: It can rob them of the oxygen needed to support life. When run-off from waste disposal gets into the water, it can feed an overabundance of algae, which then dies, sinks, and as it decomposes, consumes the available oxygen in the water. That creates hypoxic areas, or hot spots with a lack of oxygen. If fish and other marine life don’t find a new space to dwell in, they’re toast.

16. THE FISH ARE EATING A LOT OF PLASTIC.

With over seven million tons of plastic winding up in the ocean each year, it’s inevitable that a lot of it winds up as part of an unwelcome addition to a fish’s diet. For fish in the northern Pacific, researchers at the University of California, San Diego once estimated they swallow between 12,000 and 24,000 tons every year.

17. KEEPING TROPICAL PET FISH MIGHT BE HARMING THE OCEANS.

Colorful tropical fish swim in the water
iStock

Those aquariums in pet stores and dental offices might remind you of marine life, but they might also be having a negative impact. When tropical fish are caught, fishermen use sodium cyanide to make them float out of the reef for easy scooping. While the hope is that it just stuns them, the residue of the chemical can bleach coral reefs and kill scores of other fish.

18. TSUNAMI WAVES CAN REACH 100 FEET...

When waves reach shallow water near land, energy that would normally be dispersed goes up, elongating the wave. A 1958 earthquake and landslide in Alaska generated a tsunami 100 feet high and destroyed all vegetation up to 1720 feet, the largest in recorded history.

19. ...BUT THE BIGGEST WAVES ARE UNDER THE SURFACE.

Called internal waves, these water walls have been found three miles below the surface. The waves are part of water layers with different densities and can reach heights of 800 feet before collapsing. Scientists believe these massive forces can help move heat and nutrients to other areas.

20. WE'RE TRYING TO MAKE THE OCEAN DRINKABLE.

As most everyone knows, drinking salt water is perilous at best and deadly at worst. In a process called desalination, that salt is removed, leaving fresh water. But building facilities and the energy required to process water this way has traditionally been more expensive than sourcing water from potable sources.

21. THE BRISTLEMOUTH IS THE MOST ABUNDANT VERTEBRATE IN THE WORLD.

A bristlemouth snacks on a shrimp
Courtesy National Oceanic and Atmospheric Administration

Not familiar? If you saw one, you’d know. The bristlemouth is a fish a little smaller than your average human finger that has a mouth full of fangs and can glow in the dark. It’s also the most common vertebrate in the world. For comparison? Chickens could number as many as 24 billion on land, while bristlemouths are said to add up to the hundreds of trillions.

22. GIANT KELP GROWS VERY QUICKLY.

Giant kelp, or Macrocystis Pyrifera, is a type of seaweed that experiences an astonishing growth spurt. To reach its usual height of 100 feet, the species can grow up to two feet in a single day.

23. RUBBER DUCKS HAVE HELPED OUR UNDERSTANDING OF THE OCEANS.

A rubber duck floats in the water
iStock

In 1992, a shipment of bath toys was headed from China to the U.S. when the cargo ship dropped a container. More than 28,000 rubber ducks—or duckies, depending on your preference—and other play-animals were dumped into the North Pacific Ocean. Oceanographers tracked where the ducks wound up in order to better understand the water currents, with some landing ashore in Europe and Hawaii. The duck sightings didn’t ease up until the mid-2000s.

24. ANTARCTIC FISH HAVE NATURAL ANTIFREEZE.

Curious how aquatic life can survive the temperatures at the poles? Antifreeze proteins in the fish prevent ice crystals from growing, preventing their blood from being overcome by the chill and allowing it to continue flowing.

25. SEASHELLS DON'T ACTUALLY SOUND LIKE THE OCEAN.

A child holds a seashell up to her ear
iStock

Seashells have long been perceived as the iPods of the sea, tiny little devices that can mimic the static, hissing noise of the water. What they’re actually doing is acting as a resonator, or a cavity that allows sound to vibrate. By holding up the shell to your ear, you’re hearing the ambient noise around you amplified. All that whooshing air typically sounds a lot like the movement of cascading waves. If you can't make it to beach, though, it might be the next best thing.

Original image
Land Cover CCI, ESA
arrow
Afternoon Map
European Space Agency Releases First High-Res Land Cover Map of Africa
Original image
Land Cover CCI, ESA

This isn’t just any image of Africa. It represents the first of its kind: a high-resolution map of the different types of land cover that are found on the continent, released by The European Space Agency, as Travel + Leisure reports.

Land cover maps depict the different physical materials that cover the Earth, whether that material is vegetation, wetlands, concrete, or sand. They can be used to track the growth of cities, assess flooding, keep tabs on environmental issues like deforestation or desertification, and more.

The newly released land cover map of Africa shows the continent at an extremely detailed resolution. Each pixel represents just 65.6 feet (20 meters) on the ground. It’s designed to help researchers model the extent of climate change across Africa, study biodiversity and natural resources, and see how land use is changing, among other applications.

Developed as part of the Climate Change Initiative (CCI) Land Cover project, the space agency gathered a full year’s worth of data from its Sentinel-2A satellite to create the map. In total, the image is made from 90 terabytes of data—180,000 images—taken between December 2015 and December 2016.

The map is so large and detailed that the space agency created its own online viewer for it. You can dive further into the image here.

And keep watch: A better map might be close at hand. In March, the ESA launched the Sentinal-2B satellite, which it says will make a global map at a 32.8 feet-per-pixel (10 meters) resolution possible.

[h/t Travel + Leisure]

Original image
iStock
arrow
science
Scientists May Have Found the Real Cause of Dyslexia—And a Way to Treat It
Original image
iStock

Dyslexia is often described as trying to read letters as they jump around the page. Because of its connections to reading difficulties and trouble in school, the condition is often blamed on the brain. But according to a new study published in Proceedings of the Royal Society B, the so-called learning disability may actually start in the eyes.

As The Guardian reports, a team of French scientists say they've discovered a key physiological difference between the eyes of those with dyslexia and those without it. Our eyes have tiny light-receptor cells called rods and cones. The center of a region called the fovea is dominated by cones, which are also responsible for color perception.

Just as most of us have a dominant hand, most have a dominant eye too, which has more neural connections to the brain. The study of 60 people, divided evenly between those with dyslexia and those without, found that in the eyes of non-dyslexic people, the arrangement of the cones is asymmetrical: The dominant eye has a round, cone-free hole, while the other eye has an unevenly shaped hole. However, in people with dyslexia, both eyes have the same round hole. So when they're looking at something in front of them, such as a page in a book, their eyes perceive exact mirror images, which end up fighting for visual domination in the brain. This could explain why it's sometimes impossible for a dyslexic person to distinguish a "b" from a "d" or an "E" from a "3".

These results challenge previous research that connects dyslexia to cognitive abilities. In a study published earlier this year, people with the condition were found to have a harder time remembering musical notes, faces, and spoken words. In light of the new findings, it's unclear whether this is at the root of dyslexia or if growing up with vision-related reading difficulties affects brain plasticity.

If dyslexia does come down to some misarranged light-receptors in the eye, diagnosing the disorder could be as simple as giving an eye exam. The explanation could also make it easy to treat without invasive surgery. In the study, the authors describe using an LED lamp that blinks faster than the human eye can perceive to "cancel out" one of the mirror images perceived by dyslexic readers, leaving only one true image. The volunteers who read with it called it a "magic lamp." The researchers hope to further experiment with it to see see if it's a viable treatment option for the millions of people living with dyslexia.

[h/t The Guardian]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios