6 Ways Humans Influence the Weather

iStock
iStock

If you've ever spent any length of time on Twitter, you've probably heard a thing or two about humans secretly having the ability to control the weather. While that talent only exists in movies, we humans and our everyday activities do indirectly influence the weather in ways that go far beyond our production of greenhouse gases. Climate scientists and meteorologists have documented these effects for years. 

1. CITIES FORM HEAT ISLANDS.

sunlight shining through city streets and buildings
iStock

They're not exactly wrong when they call the capital of Georgia "Hotlanta." Most populated areas generate heat simply by existing. The dense web of asphalt roads, concrete sidewalks, brick facades, and tar roofs are able to absorb a significant amount of heat from the daytime sun, even in the dead of winter. This human-made insulation, called the urban heat island effect, keeps city centers a tad hotter on hot days and a little less cool on cold days.

While the urban heat island effect might make you think of burning-hot asphalt, it's actually most noticeable during winter storms when air temperatures are hovering right around freezing, putting you right on the line between wet snow, an icy mix, or a cold rain. The artificial warmth from cities can influence the precipitation type in these storms, potentially lowering a city’s snow accumulations compared to its suburbs.

A 2011 study published in the Journal of Applied Meteorology and Climatology [PDF] also found that the urban heat island effect can have a pronounced impact on thunderstorms that form over cities. The researchers studied 91 summertime thunderstorms that formed over Indianapolis, Indiana, and found that their research models could not replicate those thunderstorms without the influence of the urban area beneath the storms.

2. CROPS JACK UP THE HUMIDITY.

wheat crops growing in a field
iStock

If cities can absorb the heat of the day and make it even hotter, you can imagine how the vast swaths of crops that blanket the countryside can also affect our daily weather. Instead of making it hotter, crops can make a humid day unbearable by sending moisture levels almost off the charts on a putrid summer's day.

Corn crops are notorious for pushing dew points—the temperature at which the air reaches 100 percent humidity—up above 80°F in the middle of the summer, creating a dangerous heat index that soars far above 100°F. Compare that to a muggy day, which has a dew point around 70°F, or a comfortably dry day with a dew point in the low 50s.

The harvest can have the opposite effect. In 2016, Mesonet, a network of weather stations in Oklahoma, found that newly harvested areas of wheat in the northern part of the state were hotter and had a lower dew point than their cooler but muggier surroundings.

3. PAVING INCREASES THE INTENSITY OF FLOODS.

multilane highway with heavy traffic
iStock

Our obsession with construction doesn't stop at influencing temperatures. Paving over porous earth with relatively impervious materials like asphalt and concrete has also had a major impact on flooding during heavy rain events. Fewer places for rainwater to escape means that the sudden influx of water builds up in urban areas or runs off and inundates places that had never seen flooding before.

4. NUCLEAR POWER PLANTS CAN TRIGGER NUCLEAR-EFFECT SNOW.

nuclear power plant during the winter
iStock

Lake effect snow is a yearly phenomenon across North America’s Great Lakes, where bitterly cold air flows over the warm lake water, triggering convection that blows ashore as heavy bands of snow. The bands of snow are so intense that communities can see many feet of snow in one day, sometimes accompanied by thunder and lightning.

It's not only bodies of water that can cause this phenomenon. Nuclear power plants release large amounts of steam during the course of their operations, and on cold mornings when there's enough moisture in the air, locations immediately downwind of a power plant's steam stacks can experience "nuclear-effect snow," which forms through similar means as lake effect snow. The phenomenon isn't limited to just nuclear power plants, but they produce enough steam that it’s noticeable over a large area. Thankfully for residents nearby, it doesn't produce much snow—and it’s not radioactive.

5. URBAN DENSITY CAN AMPLIFY WINDS.

girls talking selfie in paris as wind whips their hair around
iStock

If you've ever walked down a city street on a windy day, you’ve probably noticed that it sometimes feels like you're being buffeted by air shot out of an industrial fan instead of a regular windstorm. Dense building construction can amplify the winds and cause gusts to blow much faster than they would out in the open. This wind tunnel effect can cause serious damage, blowing out windows, knocking down trees, and sending dangerous debris hurtling toward the busy streets below.

The principle is the same as holding your thumb over the end of a garden hose to make the water spray out faster—the wind speeds up dramatically as it presses between the buildings. This is also why you should never take shelter underneath a bridge during a tornado. The tornadic winds squeezing underneath the bridge will speed up, increasing the odds that you’ll be pelted by debris or sucked out into the open.

6. JETS CREATE CIRRUS CLOUDS.

plane exhaust in the sky with a foreground of bushes and trees
iStock

The simple act of flying can also create intricate patterns of clouds in the sky that wouldn't have formed had we not perfected the art of air travel. The hot water vapor produced by the engine exhaust of a high-flying jet aircraft leaves contrails, short for condensation trails, in its wake. Contrails can dissipate right away or linger for hours depending on upper-level humidity and winds. These man-made cirrus clouds are most common at high cruising altitudes, but places like the Arctic and Antarctic get cold enough that contrails can form at or near ground level.

Editor's note: This story, which originally ran in 2016, was updated in August 2018.

What Caused Pangea to Break Apart?

iStock.com/alfimimnill
iStock.com/alfimimnill

Emily Devenport:

There's another way to look at this question. People tend to think in terms of supercontinents forming and then breaking up again due to convection currents in the mantle, hot material rising and causing rifts in weaker spots, possibly in old sutures where the continents were shoved together—but what is really happening is that ocean basins are opening and closing, and the ocean has an active role in subduction.

The opening and closing of an ocean basin is called a Wilson Cycle. It begins when hot material rising from the mantle stretches the overlying crust. As molten material rises, a rift is formed. The rift is widened as material continues to squeeze into it. If that rifting goes on long enough, through a broad enough swath of a continent, ocean water will eventually flow into it, and an ocean basin begins to form. The upwelling of hot material will continue to rise through that thinner area of crust, pushing the plates apart. The Atlantic Ocean is an example of a basin that is well along in the Wilson Cycle; eventually subduction is going to begin at its margins, and the whole shebang will pivot.

This will happen because at the edge of continents, sediments accumulate. The weight of those sediments, combined with the weight of the water, drives the heavier, denser edge of the oceanic plate under the continental crust, which is fatter and lighter. Eventually subduction begins, and the basin begins to close again. The Pacific Ocean is an example of a basin that's closing.

If you look at a map of the oceanic rift zones, you'll notice that the one in the Atlantic is pretty much in the middle of that ocean, but the Pacific rift zone has been pulled all the way over to North America above Central America. Subduction is actively occurring on all margins of that plate.

The simple picture is that the continents are moving toward each other across the Pacific Ocean while the Atlantic Basin continues to widen. The truth is more complicated. When plates subduct, the water in the crust lowers the melting point of those rocks, so partial melting occurs. The partially melted material begins to rise through the overlying rocks, because it's less dense, and decompression melting occurs. Eventually, the upwelling of hot material forms plutons and volcanoes above the subduction zones. Fore-arc and Back-arc [PDF] basins can form. As the oceanic crust is pulled under the continental plate, island chains and other chunky bits get sutured to the edge of the continent along with sediments, making it larger. Our world is ~4.6 billion years old, so our continents are really large, now. They're unlikely to rift through the ancient cratons that formed their hearts.

What will happen if subduction begins on the eastern side of North America before the Pacific Basin closes? The margin next to California is a transform fault; it's not subducting. Will it eventually push itself under that part of North America again, or will the transform zone get bigger? The hot spot that was driving the ancient Farallon Plate under North America was eventually overridden by the southwestern states (Arizona, New Mexico, etc.) forming a rift zone. Will it continue to rift or poop out?

There are computer models predicting what supercontinent may form next. They will continue to change as our understanding of tectonic processes gets more accurate.

This post originally appeared on Quora. Click here to view.

The Ultimate Charles Darwin Quiz

SECTIONS

arrow
LIVE SMARTER