14 Facts About Feet

iStock/pepifoto
iStock/pepifoto

The foot is one of the most overworked, under-appreciated parts of the human body. Think about it: In a single day, the average person takes 8000 to 10,000 steps. That works out to be four trips around the world over a lifetime, putting a lot of wear and tear on your intricate foot bones. The foot may be humble, but its design is essential to how we walk upright, and hoofing it on two feet is a defining feature of humanity. Here are some fun—and a few funky—facts about the human foot.

1. FOOT BONES MAKE UP ABOUT A QUARTER OF ALL THE BONES IN OUR BODIES.

There are 26 foot bones in each of your feet—one less than in each hand. When we’re born, those foot bones are mostly cartilage. They only completely harden around age 21.

2. HUMANS HAVE WORN SHOES FOR A VERY LONG TIME.

When did humans begin wearing shoes, anyway? About 40,000 years ago, according to research from Washington University in St. Louis that analyzed foot bones from Neanderthals and early humans. Older specimens had thicker, stronger toes, likely from gripping the ground as they walked barefoot. That’s around the same time that the archaeological record shows a burst of artistic and technological advancements among early humans, including the first stone tools, which may have aided in the production of shoes. The oldest preserved shoe, incidentally, is 5500 years old and was found in an Armenian cave, buried in sheep dung.

3. THE BIG TOE USED TO BE A KIND OF FOOT THUMB.

This grasping toe helped our predecessors climb trees and, when young, grip onto their mothers. Thanks to modern science, if you lose your thumb, you can now replace it with a toe: toe-to-thumb transplants are a surprisingly common procedure these days.

4. FOOT BONES HOLD BIG CLUES ABOUT THE EVOLUTION OF BIPEDALISM.

Scientists are studying Homo naledi, a specimen discovered in a South African cave in 2013 that many researchers believe is a new human relative. H. naledi had very human-like feet, but with somewhat curved toe bones that suggest it climbed trees. It could be that H. naledi was beginning to experiment with walking. 

5. THERE WAS A FOOT CHEESE EXHIBITION IN IRELAND.

Warm, sweaty feet make a perfect home for bacteria, which feed on our dead skin cells and produce gases and acids that emit those arresting foot odors. They're apparently also good at cultivating cheese. An exhibition in Dublin in 2013 displayed a variety of cheeses made with bacteria samples obtained from real people’s feet, armpits, and belly buttons. Delicious. (No one actually ate any of the cheeses.)

6. FEET ARE ONE OF THE MOST TICKLISH PARTS OF THE BODY.

There’s a good reason for that: Humans have nearly 8000 nerves in our feet and a large number of nerve endings near the skin. Having ticklish feet can be a good sign: Reduced sensitivity can be an indicator of peripheral neuropathy (numbness in the feet caused by nerve damage). 

7. FOOT NUMBNESS CAN CAUSE BIG PROBLEMS FOR DIABETICS.

Complications of diabetes include poor circulation and foot numbness that can lead to serious skin ulcers, which sometimes require amputation of toes or feet. In 2010 alone, 73,000 lower-limb amputations were performed on diabetics.

8. FOOT SIZES AND WIDTHS IN THE U.S. AND UK ARE INCREASING.

Feet are spreading to support extra weight as our populations pack on the pounds. According to a 2014 study by the College of Podiatry in the UK, the average foot has increased two sizes since the 1970s. As people have grown taller and heavier, feet respond by growing. It appears many people are still in denial about their expanding feet: Though retailers are starting to respond by making larger and roomier shoes, half of women and a third of men reported they buy poorly fitting shoes. Podiatrists say ill-fitting shoes are to blame for a significant portion of foot problems, especially among women.

9. MANY GLAMOROUS CELEBRITIES HAVE BIG FEET.

From the bound feet of female Chinese elites to Cinderella and Barbie, freakishly small feet are often celebrated as more feminine. But plenty of glamorous women both past and present have had larger than average feet, among them Jacqueline Kennedy, Oprah Winfrey, Uma Thurman, and Audrey Hepburn (size 10, 11, 11, and 10.5, respectively).

10. WOMEN HAVE FOUR TIMES AS MANY FOOT PROBLEMS AS MEN.

That painful fact is often attributed to wearing heels. Ironically, Western women started wearing heels to effect a more masculine look: European men adopted the look from Persian warriors in the 17th century, and women soon followed suit.

11. THE AVERAGE PERSON WALKS ABOUT 100,000 MILES IN A LIFETIME. 

That’s a lot of stress on our feet. It’s not surprising, then, that lower back pain, headaches, indigestion, and spine misalignment are often related to foot problems. Some runners blow way past this mark: They've logged at least 100,000 in running miles alone. One committed runner, Herb Fred, has run a whopping 247,142 miles.

12. FOOT SIZE HAS ZERO TO DO WITH PENIS SIZE.

In a study published in 2015, researchers synthesized data from 17 previous studies that included the penis measurements of more than 15,000 men from around the world. The results: There is little evidence that penis size is linked to height, body mass, or shoe size.

13. THERE'S A REASON GRANDPA'S TOENAILS LOOK LIKE THAT.

Ever heard someone describing their toenails as “horse hooves”? As we get older, our toenails tend to thicken, making them hard to trim. This happens because toenails grow more slowly as we age, causing the nail cells to accumulate. Stubbing toes, bad shoes, and dropping things on your feet can also cause thickening, as can fungal infections and peripheral arterial disease, which narrows arteries and reduces the blood flow to limbs.

14. THERE'S A GUINNESS WORLD RECORD FOR MOST FEET AND ARMPITS SNIFFED.

Odds are you don’t have any job-related tasks nearly as revolting as this one: In the 15 years that Madeline Albrecht worked for an Ohio lab that tests Dr. Scholl products, she sniffed more than 5600 feet and untold numbers of armpits. Albrecht currently holds the Guinness World Record for—yes, this is a category—the number of feet and armpits sniffed.

‘Water’ in Kansas City Woman’s Ear Turned Out to Be a Venomous Brown Recluse Spider

N-sky/iStock via Getty Images
N-sky/iStock via Getty Images

Susie Torres, a resident of Kansas City, Missouri, woke up on Tuesday morning with the distinct feeling that water was lodged in her left ear. She likened it to the swooshing sensation that can often happen after swimming, WDAF-TV reports.

Instead of waiting for the problem to resolve itself, Torres went to the doctor—a decision that might have saved her from some serious pain. The medical assistant was the first to realize something was alarmingly amiss, and immediately called for backup.

“She ran out and said ‘I’m going to get a couple more people,’” Torres told 41 Action News. “She then said, ‘I think you have an insect in there.’” For many people, the thought of having any live insect stuck in an ear would be enough to cue a small- or large-scale freak-out, but Torres stayed calm.

The doctors “had a few tools and worked their magic and got it out,” Torres said. The “it” in question turned out to be a spider—and not just any harmless house spider (which you shouldn’t kill, by the way). It was a venomous brown recluse spider.

“Gross,” Torres told WDAF-TV. “Why, where, what, and how.”

Miraculously, the spider didn’t bite Torres. If it had, she would’ve ended up visiting the doctor with more than general ear discomfort: Brown recluse bites can cause pain, burning, fever, nausea, and purple or blue discoloration of the surrounding skin, according to Healthline.

Torres may have remained admirably level-headed throughout the ordeal, but that doesn’t mean she’s taking it lightly. “I went and put some cotton balls in my ears last night,” she told WDAF-TV. “I’m shaking off my clothes, and I don’t put my purse on the floor. I’m a little more cautious.”

Is this the first time an insect has posted up in the ear of an unsuspecting, innocent human? Absolutely not—here are six more horror stories, featuring a cockroach, a bed bug, and more.

[h/t WDAF-TV]

12 Fantastic Facts About the Immune System

monkeybusinessimages/iStock via Getty Images
monkeybusinessimages/iStock via Getty Images

If it weren't for our immune system, none of us would live very long. Not only does the immune system protect us from external pathogens like viruses, bacteria, and parasites, but it also battles cells that have mutated due to illnesses, like cancer, within the body. Here are 12 fascinating facts about the immune system.

1. The immune system saves lives.

The immune system is a complex network of tissues and organs that spreads throughout the entire body. In a nutshell, it works like this: A series of "sensors" within the system detects an intruding pathogen, like bacteria or a virus. Then the sensors signal other parts of the system to kill the pathogen and eliminate the infection.

"The immune system is being bombarded by all sorts of microbes all the time," Russell Vance, professor of immunology at University of California, Berkeley and an investigator for the Howard Hughes Medical Institute, tells Mental Floss. "Yet, even though we're not aware of it, it's saving our lives every day, and doing a remarkably good job of it."

2. Before scientists understood the immune system, illness was chalked up to unbalanced humors.

Long before physicians realized how invisible pathogens interacted with the body's system for fighting them off, doctors diagnosed all ills of the body and the mind according to the balance of "four humors": melancholic, phlegmatic, choleric, or sanguine. These criteria, devised by the Greek philosopher Hippocrates, were divided between the four elements, which were linked to bodily fluids (a.k.a. humors): earth (black bile), air (blood), water (phlegm) and fire (yellow bile), which also carried properties of cold, hot, moist, or dry. Through a combination of guesswork and observation, physicians would diagnose patients' humors and prescribe treatment that most likely did little to support the immune system's ability to resist infection.

3. Two men who unraveled the immune system's functions were bitter rivals.

Two scientists who discovered key functions of the immune system, Louis Pasteur and Robert Koch, should have been able to see their work as complementary, but they wound up rivals. Pasteur, a French microbiologist, was famous for his experiments demonstrating the mechanism of vaccines using weakened versions of the microbes. Koch, a German physician, established four essential conditions under which pathogenic bacteria can infect hosts, and used them to identify the Mycobacterium tuberculosis bacterium that causes tuberculosis. Though both helped establish the germ theory of disease—one of the foundations of modern medicine today—Pasteur and Koch's feud may have been aggravated by nationalism, a language barrier, criticisms of each other's work, and possibly a hint of jealousy.

4. Specialized blood cells are the immune system's greatest weapon.

The most powerful weapons in your immune system's arsenal are white blood cells, divided into two main types: lymphocytes, which create antigens for specific pathogens and kill them or escort them out of the body; and phagocytes, which ingest harmful bacteria. White blood cells not only attack foreign pathogens, but recognize these interlopers the next time they meet them and respond more quickly. Many of these immune cells are produced in your bone marrow but also in the spleen, lymph nodes, and thymus, and are stored in some of these tissues and other areas of the body. In the lymph nodes, which are located throughout your body but most noticeably in your armpits, throat, and groin, lymphatic fluid containing white blood cells flows through vein-like tubules to escort foreign invaders out.

5. The spleen helps your immune system work.

Though you can live without the spleen, an organ that lies between stomach and diaphragm, it's better to hang onto it for your immune function. According to Adriana Medina, a doctor who specializes in hematology and oncology at the Alvin and Lois Lapidus Cancer Institute at Sinai Hospital in Baltimore, your spleen is "one big lymph node" that makes new white blood cells and cleans out old blood cells from the body.

It's also a place where immune cells congregate. "Because the immune cells are spread out through the body," Vance says, "eventually they need to communicate with each other." They do so in both the spleen and lymph nodes.

6. You have immune cells in all of your tissues.

While immune cells may congregate more in lymph nodes than elsewhere, "every tissue in your body has immune cells stationed in it or circulating through it, constantly roving for signs of attack," Vance explains. These cells also circulate through the blood. The reason for their widespread presence is that there are thousands of different pathogens that might infect us, from bacteria to viruses to parasites. "To eliminate each of those different kinds of threats requires specialized detectors," he says.

7. How friendly you're feeling could be linked to your immune system.

From an evolutionary perspective, humans' high sociability may have less to do with our bigger brains, and more to do with our immune system's exposure to a greater number of bacteria and other pathogens.

Researchers at the University of Virginia School of Medicine have theorized that interferon gamma (IG), a substance that helps the immune system fight invaders, was linked to social behavior, which is one of the ways we become exposed to pathogens.

In mice, they found IG acted as a kind of brake to the brain's prefrontal cortex, essentially stopping aberrant hyperactivity that can cause negative changes in social behavior. When they blocked the IG molecule, the mice's prefrontal cortexes became hyperactive, resulting in less sociability. When they restored the function, the mice's brains returned to normal, as did their social behavior.

8. Your immune system might recruit unlikely organs, like the appendix, into service.

The appendix gets a bad rap as a vestigial organ that does nothing but occasionally go septic and create a need for immediate surgery. But the appendix may help keep your gut in good shape. According to Gabrielle Belz, professor of molecular immunology at the Walter and Eliza Hall Institute of Medical Research in Melbourne, Australia, research by Duke University's Randal Bollinger and Bill Parker suggests the appendix houses symbiotic bacteria that are important for overall gut health—especially after infections wipe out the gut's good microbes. Special immune cells known as innate lymphoid cells (ILCs) in the appendix may help to repopulate the gut with healthy bacteria and put the gut back on track to recovery.

9. Gut bacteria has been shown to boost immune systems in mice.

Researchers at the University of Chicago noticed that one group of mice in their lab had a stronger response to a cancer treatment than other mice. They eventually traced the reason to a strain of bacteria—Bifidobacterium—in the mice's guts that boosted the animals' immune system to such a degree they could compare it to anti-cancer drugs called checkpoint inhibitors, which keep the immune system from overreacting.

To test their theory, they transferred fecal matter from the robust mice to the stomachs of less immune-strengthened mice, with positive results: The treated mice mounted stronger immune responses and tumor growth slowed. When they compared the bacterial transfer effects with the effects of a checkpoint inhibitor drug, they found that the bacteria treatment was just as effective. The researchers believe that, with further study, the same effect could be seen in human cancer patients.

10. Scientists are trying to harness the immune system's "Pac-Man" cells to treat cancer.

Aggressive pediatric tumors are difficult to treat due to the toxicity of chemotherapy, but some researchers are hoping to develop effective treatments without the harmful side effects. Stanford researchers designed a study around a recently discovered molecule known as CD47, a protein expressed on the surface of all cells, and how it interacts with macrophages, white blood cells that kill abnormal cells. "Think of the macrophages as the Pac-Man of the immune system," Samuel Cheshier, lead study author and assistant professor of neurosurgery at Stanford Medicine, tells Mental Floss.

CD47 sends the immune system's macrophages a "don't eat me" signal. Cancer cells fool the immune system into not destroying them by secreting high amounts of CD47. When Cheshier and his team blocked the CD47 signals on cancer cells, the macrophages could identify the cancer cells and eat them, without toxic side effects to healthy cells. The treatment successfully shrank all five of the common pediatric tumors, without the nasty side effects of chemotherapy.

11. A new therapy for type 1 diabetes tricks the immune system.

In those with type 1 diabetes, the body attacks its own pancreatic cells, interrupting its normal ability to produce insulin in response to glucose. In a 2016 paper, researchers at MIT, in collaboration with Boston's Children's Hospital, successfully designed a new material that allows them to encapsulate and transplant healthy pancreatic "islet" cells into diabetic mice without triggering an immune response. Made from seaweed, the substance is benign enough that the body doesn't react to it, and porous enough to allow the islet cells to be placed in the abdomen of mice, where they restore the pancreatic function. Senior author Daniel Anderson, an associate professor at MIT, said in a statement that this approach "has the potential to provide [human] diabetics with a new pancreas that is protected from the immune system, which would allow them to control their blood sugar without taking drugs. That's the dream."

12. Immunotherapy is on the cutting edge of immune system research.

Over the last few years, research in the field of immunology has focused on developing cancer treatments using immunotherapy. This method engineers the patient's own normal cells to attack the cancer cells. Vance says the technique could be used for many more conditions. "I feel like that could be just the tip of the iceberg," he says. "If we can understand better what the cancer and immunotherapy is showing, maybe we can go in there and manipulate the immune responses and get good outcomes for other diseases, too."

SECTIONS

arrow
LIVE SMARTER