What's the Difference Between a Rabbit and a Hare?

iStock.com/Carmen Romero
iStock.com/Carmen Romero

Hippity, hoppity, Easter's on its way—and so is the eponymous Easter bunny. But aside from being a magical, candy-carrying creature, what exactly is Peter Cottontail: bunny, rabbit, or hare? Or are they all just synonyms for the same adorable animal?

In case you've been getting your fluffy, long-eared mammals mixed up, we've traveled down the rabbit hole to set the record straight. Although rabbits and hares belong to the same grass-munching family—called Leporidae—they're entirely different species with unique characteristics. It would be like comparing sheep and goats, geneticist Steven Lukefahr of Texas A&M University told National Geographic.

If you aren't sure which animal has been hopping around and helping themselves to the goodies in your vegetable garden, take a closer look at their ears. In general, hares have longer ears and larger bodies than rabbits. Rabbits also tend to be more social creatures, while hares prefer to keep to themselves.

As for the baby animals, they go by different names as well. Baby hares are called leverets, while newborn rabbits are called kittens or kits. So where exactly do bunnies fit into this narrative? Originally, the word bunny was used as a term of endearment for a young girl, but its meaning has evolved over time. Bunny is now a cutesy, childlike way to refer to both rabbits and hares—although it's more commonly associated with rabbits these days. With that said, the Easter bunny is usually depicted as a rabbit, but the tradition is thought to have originated with German immigrants who brought their legend of an egg-laying hare called "Osterhase" to America.

In other ambiguous animal news, the case of Bugs Bunny is a little more complicated. According to scientist and YouTuber Nick Uhas, the character's long ears, fast speed, and solitary nature seem to suggest he's a hare. However, in the cartoon, Bugs is shown burrowing underground, which doesn't jive with the fact that hares—unlike most rabbits—live aboveground. "We can draw the conclusion that Bugs may be a rabbit with hare-like behavior or a hare with rabbit nesting habits," Uhas says.

The conversation gets even more confusing when you throw jackrabbits into the mix, which aren't actually rabbits at all. Jackrabbits are various species of large hare that are native to western North America; the name itself is a shortened version of "jackass rabbit," which refers to the fact that the animal's ears look a little like a donkey's.

A jackrabbit
Connor Mah, Flickr // CC BY-SA 2.0

As Mark Twain once famously wrote about the creature, "He is just like any other rabbit, except that he is from one-third to twice as large, has longer legs in proportion to his size, and has the most preposterous ears that ever were mounted on any creature but the jackass." (Fun fact: Black-tailed jackrabbits' extra-long ears actually help them stay cool in the desert. The blood vessels in their ears enlarge when it gets hot, causing blood to flow to their ears and ridding their bodies of excess heat.)

Rabbits, hares, and jackrabbits all have one thing in common, though: They love a good salad. So if you happen across one of these hopping creatures, give them some grass or weeds—and skip the carrots. Bugs Bunny may have loved the orange vegetable, but most hares and rabbits would prefer leafy greens.

Have you got a Big Question you'd like us to answer? If so, send it to bigquestions@mentalfloss.com.

Why Do People Get Ice Cream Headaches?

CharlieAJA, istock/getty images plus
CharlieAJA, istock/getty images plus

Reader Susann writes in to ask, "What exactly is the cause of brain freeze?"

You may know an ice cream headache by one of its other names: brain freeze, a cold-stimulus headache, or sphenopalatine ganglioneuralgia ("nerve pain of the sphenopalatine ganglion"). But no matter what you call it, it hurts like hell.

Brain freeze is brought on by the speedy consumption of cold beverages or food. According to Dr. Joseph Hulihan—a principal at Paradigm Neuroscience and former associate professor in the Department of Neurology at the Temple University Health Sciences Center, ice cream is a very common cause of head pain, with about one third of a randomly selected population succumbing to ice cream headaches.

What Causes That Pain?

As far back as the late 1960s, researchers pinned the blame on the same vascular mechanisms—rapid constriction and dilation of blood vessels—that were responsible for the aura and pulsatile pain phases of migraine headaches. When something cold like ice cream touches the roof of your mouth, there is a rapid cooling of the blood vessels there, causing them to constrict. When the blood vessels warm up again, they experience rebound dilation. The dilation is sensed by pain receptors and pain signals are sent to the brain via the trigeminal nerve. This nerve (also called the fifth cranial nerve, the fifth nerve, or just V) is responsible for sensation in the face, so when the pain signals are received, the brain often interprets them as coming from the forehead and we perceive a headache.

With brain freeze, we're perceiving pain in an area of the body that's at a distance from the site of the actual injury or reception of painful stimulus. This is a quirk of the body known as referred pain, and it's the reason people often feel pain in their neck, shoulders, and/or back instead of their chest during a heart attack.

To prevent brain freeze, try the following:

• Slow down. Eating or drinking cold food slowly allows one's mouth to get used to the temperature.

• Hold cold food or drink in the front part of your mouth and allow it to warm up before swallowing.

• Head north. Brain freeze requires a warm ambient temperature to occur, so it's almost impossible for it to happen if you're already cold.

This story has been updated for 2019.

Why Does Humidity Make Us Feel Hotter?

Tomwang112/iStock via Getty Images
Tomwang112/iStock via Getty Images

With temperatures spiking around the country, we thought it might be a good time to answer some questions about the heat index—and why humidity makes us feel hotter.

Why does humidity make us feel hotter?

To answer that question, we need to talk about getting sweaty.

As you probably remember from your high school biology class, one of the ways our bodies cool themselves is by sweating. The sweat then evaporates from our skin, and it carries heat away from the body as it leaves.

Humidity throws a wrench in that system of evaporative cooling, though. As relative humidity increases, the evaporation of sweat from our skin slows down. Instead, the sweat just drips off of us, which leaves us with all of the stinkiness and none of the cooling effect. Thus, when the humidity spikes, our bodies effectively lose a key tool that could normally be used to cool us down.

What's relative about relative humidity?

We all know that humidity refers to the amount of water contained in the air. However, as the air’s temperature changes, so does the amount of water the air can hold. (Air can hold more water vapor as the temperature heats up.) Relative humidity compares the actual humidity to the maximum amount of water vapor the air can hold at any given temperature.

Whose idea was the heat index?

While the notion of humidity making days feel warmer is painfully apparent to anyone who has ever been outside on a soupy day, our current system owes a big debt to Robert G. Steadman, an academic textile researcher. In a 1979 research paper called, “An Assessment of Sultriness, Parts I and II,” Steadman laid out the basic factors that would affect how hot a person felt under a given set of conditions, and meteorologists soon used his work to derive a simplified formula for calculating heat index.

The formula is long and cumbersome, but luckily it can be transformed into easy-to-read charts. Today your local meteorologist just needs to know the air temperature and the relative humidity, and the chart will tell him or her the rest.

Is the heat index calculation the same for everyone?

Not quite, but it’s close. Steadman’s original research was founded on the idea of a “typical” person who was outdoors under a very precise set of conditions. Specifically, Steadman’s everyman was 5’7” tall, weighed 147 pounds, wore long pants and a short-sleeved shirt, and was walking at just over three miles per hour into a slight breeze in the shade. Any deviations from these conditions will affect how the heat/humidity combo feels to a certain person.

What difference does being in the shade make?

Quite a big one. All of the National Weather Service’s charts for calculating the heat index make the reasonable assumption that folks will look for shade when it’s oppressively hot and muggy out. Direct sunlight can add up to 15 degrees to the calculated heat index.

How does wind affect how dangerous the heat is?

Normally, when we think of wind on a hot day, we think of a nice, cooling breeze. That’s the normal state of affairs, but when the weather is really, really hot—think high-90s hot—a dry wind actually heats us up. When it’s that hot out, wind actually draws sweat away from our bodies before it can evaporate to help cool us down. Thanks to this effect, what might have been a cool breeze acts more like a convection oven.

When should I start worrying about high heat index readings?

The National Weather Service has a handy four-tiered system to tell you how dire the heat situation is. At the most severe level, when the heat index is over 130, that's classified as "Extreme Danger" and the risk of heat stroke is highly likely with continued exposure. Things get less scary as you move down the ladder, but even on "Danger" days, when the heat index ranges from 105 to 130, you probably don’t want to be outside. According to the service, that’s when prolonged exposure and/or physical activity make sunstroke, heat cramps, and heat exhaustion likely, while heat stroke is possible.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

This article has been updated for 2019.

SECTIONS

arrow
LIVE SMARTER