Life on Nearby Exoplanet Barnard's Star B Might Be Possible, According to Astronomers

iStock.com/PavelSmilyk
iStock.com/PavelSmilyk

Despite contradictory statements from UFO eyewitnesses, we have yet to confirm the presence of intelligent life beyond Earth. But astronomers continue to flirt with that hope. The most recent speculation comes from Barnard’s Star, the second-closest star system to Earth, which is circled by a frozen super-Earth dubbed Barnard's Star b. While its surface might be as cold as -274°F, there may just be potential for life.

According to CNET, the chilly Barnard's Star b—located 6 light years away from Earth—could still be hospitable to living organisms. Astrophysicists at Villanova University speculate the planet could have a hot liquid-iron core that produces geothermal energy. That warmth might support primitive life under the icy surface. A similar situation could possibly occur on Jupiter’s moon, Europa, where tidal heating might allow for subsurface oceans containing living things.

Barnard's Star b has a mass just over three times that of Earth. The conclusions about potential life were drawn by Villanova researchers from 15 years of photometry examination of the solar system [PDF].

“The most significant aspect of the discovery of Barnard’s star b is that the two nearest star systems to the Sun are now known to host planets,” Scott Engle, a Villanova astrophysicist, said in a statement. “This supports previous studies based on Kepler Mission data, inferring that planets can be very common throughout the galaxy, even numbering in the tens of billions. Also, Barnard’s Star is about twice as old as the Sun—about 9 billion years old compared to 4.6 billion years for the Sun. The universe has been producing Earth-size planets far longer than we, or even the Sun itself, have existed.”

Scientists hope to learn more about the potential for life on Barnard's Star b as new, more powerful telescopes are put into use. NASA’s delayed James Webb Space Telescope could be one such solution. Its 21-foot mirror—three times the size of the Hubble—is set to open in 2021.

[h/t CNET]

The Northern Lights May be Visible in New York, Michigan, and Illinois on Saturday

iStock.com/den-belitsky
iStock.com/den-belitsky

The Northern Lights, a meteorological event most common to areas north of the Arctic Circle, may be visible over parts of America this weekend, Newsweek reports. Due to a solar storm, the light show may appear Saturday night over states in the northern part of the contiguous U.S., including New York, Michigan, Illinois, and Washington state.

Aurora borealis, or the Northern Lights, occur when solar particles react to gases in Earth's atmosphere. Magnetic energy exaggerates this effect, which is why auroras most often appear at the geomagnetic poles where Earth's magnetic field is strongest. Rare circumstances can produce this phenomenon at lower latitudes, which may be the case this weekend.

On Wednesday, March 20, a solar flare sent a blast of solar particles toward Earth. The resulting geomagnetic storm could make for a vibrant and colorful aurora reaching as far south as New York and Wisconsin.

To catch the spectacle, look up at the night sky on Saturday, March 23. People in areas with minimal light pollution have the best chance of seeing the Northern Lights, though cloudy weather may make them hard to see.

[h/t Newsweek]

5 Fast Facts About the Spring Equinox

iStock.com/AHPhotoswpg
iStock.com/AHPhotoswpg

The northern hemisphere has officially survived a long winter of Arctic temperatures, bomb cyclones, and ice tsunamis. Spring starts March 20, which means warmer weather and longer days are around the corner. To celebrate the spring equinox, hear are some facts about the event.

1. The spring equinox arrives at 5:58 p.m.

The first day of spring is today, but the spring equinox will only be here for a brief time. At 5:58 p.m. Eastern Time, the Sun will be perfectly in line with the equator, which results in both the northern and southern hemispheres receiving equal amounts of sunlight throughout the day. After the vernal equinox has passed, days will start to become shorter for the Southern Hemisphere and longer up north.

2. The Equinox isn't the only time you can balance an egg.

You may have heard the myth that you can balance on egg on its end during the vernal equinox, and you may have even tried the experiment in school. The idea is that the extra gravitational pull from the Sun when it's over the equator helps the egg stand up straight. While it is possible to balance an egg, the trick has nothing to do with the equinox: You can make an egg stand on its end by setting it on a rough surface any day of the year.

3. Not every place gets equal night and day.

The equal night and day split between the northern and southern hemispheres isn't distributed evenly across all parts of the world. Though every region gets approximately 12 hours of sunlight the day of the vernal equinox, some places get a little more (the day is 12 hours and 15 minute in Fairbanks, Alaska), and some get less (it's 12 hours and 6 minutes in Miami).

4. The name means Equal Night.

The word equinox literally translates to equal ("equi") and night ("nox") in Latin. The term vernal means "new and fresh," and comes from the Latin word vernus for "of spring."

5. The 2019 spring equinox coincides with a supermoon.

On March 20, the day the Sun lines up with equator, the Moon will reach the closest point to Earth in its orbit. The Moon will also be full, making it the third supermoon of 2019. A full moon last coincided with the first day of spring on March 20, 1981, and it the two events won't occur within 24 hours of each other again until 2030.

SECTIONS

arrow
LIVE SMARTER