Do 'Close Door' Buttons in Elevators Actually Do Anything?

iStock
iStock

When you’re running late for work, one small comfort is finding an empty elevator waiting for you at your office building. You scurry inside, and since no one else is waiting to enter, you jab the 'close door' button. The doors comply, the elevator starts moving, and you breathe a sigh of relief.

This is a familiar scenario for many, but it’s also a big fat lie. That’s because most of the door-close buttons in U.S. elevators don’t actually work. In fact, they’re programmed that way.

But before you get ready to send off a strongly worded email to your office building’s elevator manufacturer, you may want to hear why this is the case. When the Americans With Disabilities Act was first passed in 1990, certain requirements for elevators were outlined, such as the installation of raised buttons, braille signs, and audible signals.

The act ensured that someone with a disability would have enough time to get inside, stipulating that elevator doors must remain fully open for at least three seconds and thereby preventing the button from cutting that time short. Some elevator manufacturers took it one step further by deactivating the button entirely.

Since the life span of an elevator is about 25 years and the Disabilities Act has been around for 28 years, it’s safe to assume that most of the elevators in operation today do not have a functioning 'close door' button, The New York Times reports. Only firefighters are able to close elevator doors manually through the use of a key.

It's important to note that there are exceptions to this rule, though. As the New York Daily News noted, New York City elevators are required by law to have working 'close door' buttons, even though some operate on a long delay (so long, in fact, that it calls the button's usefulness into question).

However, you’re in luck if you’re taking a lift (which, of course, is British for “elevator”). 'Close door' buttons are fully functional in most elevators in the UK, according to The Telegraph. A spokesman for the Lift and Escalator Industry Association told the newspaper that not all elevators have the button, but when they’re present, they do work. Again, the time it takes for the doors to shut after pressing the button varies from lift to lift.

While U.S. elevator manufacturers have a seemingly good reason for disabling the 'close door' button, some may question the point of propagating the myth and installing a button that serves no purpose in the first place. In response, some would argue that placebo buttons serve an important psychological function in society.

"Perceived control is very important," Harvard psychologist Ellen J. Langer told The New York Times. "It diminishes stress and promotes well-being."

That’s right: By believing that you’re in control of your fate—or at least how quickly you can make it up to the sixth floor—you’re better off. It doesn’t end with elevators, either. Buttons placed at city crosswalks are often disabled, and the thermostats in many office buildings are rigged so that the temperature can’t be altered (even if the numbers appear to change).

Some might swear up and down that elevator 'close door' buttons work, but this, too, could be your brain deceiving you. As author David McRaney wrote in an essay: “If you happen to find yourself pressing a nonfunctional close-door button, and later the doors close, you’ll probably never notice because a little spurt of happiness will cascade through your brain once you see what you believe is a response to your action. Your behavior was just reinforced. You will keep pressing the button in the future.”

According to The New Yorker, these buttons are designed to alleviate some of the subconscious anxiety that comes from stepping inside a tiny box that's hoisted up some 20 or 40 or 80 floors by a cable: “Elevator design is rooted in deception—to disguise not only the bare fact of the box hanging by ropes but also the tethering of tenants to a system over which they have no command."

So now you know: Next time you’re running late to work, take comfort in the fact that those few extra seconds you would’ve saved by pressing a functioning 'close door' button aren’t worth all that much in the long run.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

Why Do People Get Ice Cream Headaches?

CharlieAJA, istock/getty images plus
CharlieAJA, istock/getty images plus

Reader Susann writes in to ask, "What exactly is the cause of brain freeze?"

You may know an ice cream headache by one of its other names: brain freeze, a cold-stimulus headache, or sphenopalatine ganglioneuralgia ("nerve pain of the sphenopalatine ganglion"). But no matter what you call it, it hurts like hell.

Brain freeze is brought on by the speedy consumption of cold beverages or food. According to Dr. Joseph Hulihan—a principal at Paradigm Neuroscience and former associate professor in the Department of Neurology at the Temple University Health Sciences Center, ice cream is a very common cause of head pain, with about one third of a randomly selected population succumbing to ice cream headaches.

What Causes That Pain?

As far back as the late 1960s, researchers pinned the blame on the same vascular mechanisms—rapid constriction and dilation of blood vessels—that were responsible for the aura and pulsatile pain phases of migraine headaches. When something cold like ice cream touches the roof of your mouth, there is a rapid cooling of the blood vessels there, causing them to constrict. When the blood vessels warm up again, they experience rebound dilation. The dilation is sensed by pain receptors and pain signals are sent to the brain via the trigeminal nerve. This nerve (also called the fifth cranial nerve, the fifth nerve, or just V) is responsible for sensation in the face, so when the pain signals are received, the brain often interprets them as coming from the forehead and we perceive a headache.

With brain freeze, we're perceiving pain in an area of the body that's at a distance from the site of the actual injury or reception of painful stimulus. This is a quirk of the body known as referred pain, and it's the reason people often feel pain in their neck, shoulders, and/or back instead of their chest during a heart attack.

To prevent brain freeze, try the following:

• Slow down. Eating or drinking cold food slowly allows one's mouth to get used to the temperature.

• Hold cold food or drink in the front part of your mouth and allow it to warm up before swallowing.

• Head north. Brain freeze requires a warm ambient temperature to occur, so it's almost impossible for it to happen if you're already cold.

This story has been updated for 2019.

Why Does Humidity Make Us Feel Hotter?

Tomwang112/iStock via Getty Images
Tomwang112/iStock via Getty Images

With temperatures spiking around the country, we thought it might be a good time to answer some questions about the heat index—and why humidity makes us feel hotter.

Why does humidity make us feel hotter?

To answer that question, we need to talk about getting sweaty.

As you probably remember from your high school biology class, one of the ways our bodies cool themselves is by sweating. The sweat then evaporates from our skin, and it carries heat away from the body as it leaves.

Humidity throws a wrench in that system of evaporative cooling, though. As relative humidity increases, the evaporation of sweat from our skin slows down. Instead, the sweat just drips off of us, which leaves us with all of the stinkiness and none of the cooling effect. Thus, when the humidity spikes, our bodies effectively lose a key tool that could normally be used to cool us down.

What's relative about relative humidity?

We all know that humidity refers to the amount of water contained in the air. However, as the air’s temperature changes, so does the amount of water the air can hold. (Air can hold more water vapor as the temperature heats up.) Relative humidity compares the actual humidity to the maximum amount of water vapor the air can hold at any given temperature.

Whose idea was the heat index?

While the notion of humidity making days feel warmer is painfully apparent to anyone who has ever been outside on a soupy day, our current system owes a big debt to Robert G. Steadman, an academic textile researcher. In a 1979 research paper called, “An Assessment of Sultriness, Parts I and II,” Steadman laid out the basic factors that would affect how hot a person felt under a given set of conditions, and meteorologists soon used his work to derive a simplified formula for calculating heat index.

The formula is long and cumbersome, but luckily it can be transformed into easy-to-read charts. Today your local meteorologist just needs to know the air temperature and the relative humidity, and the chart will tell him or her the rest.

Is the heat index calculation the same for everyone?

Not quite, but it’s close. Steadman’s original research was founded on the idea of a “typical” person who was outdoors under a very precise set of conditions. Specifically, Steadman’s everyman was 5’7” tall, weighed 147 pounds, wore long pants and a short-sleeved shirt, and was walking at just over three miles per hour into a slight breeze in the shade. Any deviations from these conditions will affect how the heat/humidity combo feels to a certain person.

What difference does being in the shade make?

Quite a big one. All of the National Weather Service’s charts for calculating the heat index make the reasonable assumption that folks will look for shade when it’s oppressively hot and muggy out. Direct sunlight can add up to 15 degrees to the calculated heat index.

How does wind affect how dangerous the heat is?

Normally, when we think of wind on a hot day, we think of a nice, cooling breeze. That’s the normal state of affairs, but when the weather is really, really hot—think high-90s hot—a dry wind actually heats us up. When it’s that hot out, wind actually draws sweat away from our bodies before it can evaporate to help cool us down. Thanks to this effect, what might have been a cool breeze acts more like a convection oven.

When should I start worrying about high heat index readings?

The National Weather Service has a handy four-tiered system to tell you how dire the heat situation is. At the most severe level, when the heat index is over 130, that's classified as "Extreme Danger" and the risk of heat stroke is highly likely with continued exposure. Things get less scary as you move down the ladder, but even on "Danger" days, when the heat index ranges from 105 to 130, you probably don’t want to be outside. According to the service, that’s when prolonged exposure and/or physical activity make sunstroke, heat cramps, and heat exhaustion likely, while heat stroke is possible.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

This article has been updated for 2019.

SECTIONS

arrow
LIVE SMARTER