The 98.6°F Myth: Why Everything You Think You Know About Body Temperature Is a Lie

It all started with a giant armpit thermometer.

Everything you knew about normal human body temperature is a myth.
Everything you knew about normal human body temperature is a myth. / Westend61/Getty Images

When you were kid, you probably knew that to score a magical sick day home from school, you needed to have a fever. When the thermometer came out of your mouth, it had to read higher than 98.6°F—the long-accepted “normal” human body temperature. (If you wanted to really seal the deal, you may have hoped to hit 100°F.) Since then, you may have used a temperature above 98.6°F as a metric to work from home (or call out sick entirely).

You may be shocked to learn that the average body temperature isn't actually 98.6°F—a fact that we’ve known for more than 30 years. A 2023 study by Stanford Medicine researchers found that not only is the average human body temp more like 97.9°F, but an individual’s normal range can be influenced by sex, age, height, weight, and even the time of day.

The 98.6°F myth originated in the 19th century with a single doctor, and despite evidence to the contrary, it’s persisted ever since.

The Giant, Faulty Armpit Thermometer

In 1851, Carl Wunderlich, the director of the hospital at Leipzig University, began going from room to room with a comically large thermometer in tow. He wanted to understand how body temperature is affected by different diseases, so in each room, he would hold the foot-long device in patients’ armpits for a full 20 minutes, waiting for a temperature to register. Once it did, he’d note the temperature on the patient’s chart (Wunderlich is thought to be the first physician to do so). He and his staff did this for years, repeatedly taking the temperatures of some 25,000 patients and logging them on their charts, until he had millions of readings. In 1868, he finally published this data in Das Verhalten der Eigenwarme in Krankheiten (On the Temperature in Diseases: A Manual of Medical Thermometry). He concluded that the average human body temperature was 98.6°F, underscoring the idea that fever is a symptom of illness, not a cause.

No one questioned Wunderlich’s methods, or his average, for about 140 years. Then, in the early 1990s, internist Philip Mackowiak—a professor of medicine at the University of Maryland, a medical historian, and, apparently, a clinical thermometer enthusiast—saw one of the physician’s instruments at the Mütter Museum in Philadelphia. He told the Freakonomics podcast that he’d always had doubts about the 98.6°F standard. “I am by nature a skeptic,” he said. “And it occurred to me very early in my career that this idea that 98.6 was normal, and then if you didn’t have a temperature of 98.6, you were somehow abnormal, just didn’t sit right.”

Getting his hands on Wunderlich‘s thermometer—which the museum let him borrow—only deepened his doubts. The huge thermometer was unwieldy and non-registering, meaning, Mackowiak explained, “that it has to be read while it’s in place.” Not only that, but Wunderlich had used the device to measure temperatures in the armpit, which is less reliable than temperatures taken in the mouth or rectum. The instrument itself also wasn’t terribly precise: It measured up to 2°C higher than both ancient and modern instruments.

Putting 98.6°F to the Test

In 1992, Mackowiak decided to test Wunderlich’s average. Using normal-sized oral thermometers and a group of volunteers, the data suggested that the average human body temperature hovered around 98.2°F. Mackowiak found that body temperature tends to vary over the course of the day, with its lowest point around 6 a.m. and its highest in the early evening. Body temperature can also fluctuate monthly (with the menstrual cycle) and over a lifetime (declining decade by decade with age), and may even be differentially linked to sex and race. He concluded that normal body temperature is unique to each person, almost like a fingerprint, and given that wide variation, not actually a very reliable indicator of illness.

As a result of his study, Mackowiak proposed raising the threshold for fever to 98.9°F for temperatures taken in the morning (and 99.9°F at other times). While it’s a relatively minor change in terms of actual degrees, this fever threshold is lower than the CDC’s, which is a temperature of 100.4°F or higher.

There are potential real-life consequences in this gap, for everyone from students (who’d have to attend school with what would be considered a low-grade fever by Wunderlich’s 98.6°F standard) to employers and daycares (which use temperature to set attendance policies). What’s more, anyone who is actually sick but ignores a low-grade fever—one that meets Mackowiak’s threshold but still falls under the CDC’s—could pose a risk to people with compromised immune systems trying to avoid unnecessary exposure to illness in public places.

The Balancing Point

There’s a reason the average trends near 98°F instead of 92°F or 106°F. As endotherms, mammals expend a great deal of energy maintaining body temperature when compared with cold-blooded creatures. To find and conserve a just-right body temperature, central nervous system sensors gather data (too warm? too cold? just right, Goldilocks?) and send that information to the pebble-sized hypothalamus near the base of the brain. There, the data is converted into action: releasing sweat and widening the blood vessels if too warm; raising metabolism, constricting the blood vessels, and inducing shivering if too cold.

According to a study by Aviv Bergman and Arturo Casadevall in the journal mBio, the precise balancing point for ideal body temperature is the sweet spot where the metabolic cost for all this thermoregulation balances with the evolutionary advantage of warding off fungal disease. (While warm-blooded animals are prone to bacterial or viral infections, they rarely experience fungal infections because most fungi can't withstand temperatures above 86°F. Cold-blooded animals, on the other hand, are prone to all three.) For Bergman and Casadevall, this benefit even explains what tipped Darwin's scales in favor of mammals, allowing them to edge out other vertebrates for dominance after the Cretaceous-Tertiary mass extinction wiped out the dinosaurs.

Of course, rules call for exceptions, and the one place where human body temperature demonstrates sustained elevation is outer space. Astronauts on prolonged missions clock significantly higher average body temperatures than they do when terrestrial—even up to 104°F. This so-called “space fever” is probably a product of some combination of radiation exposure, psychological stress, and immune response to weightlessness. Researchers believe this phenomenon could yield crucial information about thermoregulation—and may even offer insight into how humans might adapt to climate change.

Why the 98.6°F Myth Persists

It’s been more than three decades years since Mackowiak’s study and other research that supports his findings, yet the newer data has not taken hold among medical professionals or the public. What gives?

Mackowiak tells Mental Floss that he finds it a bit mystifying that the myth persists, especially since many people, when pressed, know that the so-called “average” temperature varies. Part of the problem may be psychological: We cling to beliefs despite evidence to the contrary—a phenomenon called belief perseverance. It’s a significant force upholding a surprising number of medical myths. The idea humans should drink eight glasses of water a day? Not science. Sugar causes hyperactive behavior? Nope. Reading in dim light harms eyesight? Not really.

Unlearning persistent myths—especially ones loaded with the weight of medical authority—is difficult. “Deep down, under it all,” Mackowiak says, “people want simple answers for things.”

Read More About Medical History:

manual

A version of this story was published in 2018; it has been updated for 2024.