How a Medieval Tree Helped Debunk a Famous Instrument's Identity

iStock
iStock

On October 30, 1962, a 20-year-old double bass player named Gary Karr took the stage at Town Hall in his New York City debut. During his performance of Bach and Schubert sonatas, Karr played with his eyes closed, seeming to sense the movements of the notes through his instrument. Howard Klein, a critic for The New York Times, praised Karr's "hard-won and superb technique" and innate feel for the bass. "He played it in a way that few bassists even dreamed of," Klein wrote.

In the audience, Olga Koussevitzky sat transfixed. Later, she described seeing the ghost of her husband, Serge Koussevitzky—the legendary director of the Boston Symphony Orchestra and one of the greatest bassists who ever lived—embrace Karr on stage.

The experience prompted her to give the young musician her late husband's treasured double bass, now called the Karr-Koussevitzky bass. In 2004, when Karr retired from performing, he had it appraised—and realized it was not what it seemed. According to Discover, a team of dendrochronologists—scientists who study tree rings—found that the storied instrument had an unknown past.

Gary Karr (right) plays bass in a 1960s concert
Gary Karr (right) plays a double bass, possibly the Karr-Koussevitzky bass, in a 1969 concert.
Erich Auerbach/Getty Images

Serge Koussevitzky bought the bass in the early 20th century and believed that it had been made by the famed Amati brothers in 1611. Antonio and Girolamo Amati were contemporaries with the master violin maker Antonio Stradivari—in fact, Stradivari learned the craft from Girolamo Amati's son Nicolò. The brothers had a workshop in Cremona, Italy, that turned out beautiful and highly coveted stringed instruments, including violins, violas, and cellos—but very few, if any, double basses. The latter instruments are more than 6 feet tall and resonate an octave deeper than cellos, and because of their huge size and structure are considered difficult to master.

Karr, renowned as the greatest bassist of the 20th century, built his career on Koussevitzky's instrument and played it for more than 40 years. But when Karr had the instrument examined, three experts concluded that it could not have been made by the Amati brothers. They said its technical characteristics were more in line with instruments made in France around 1800. Without the Amati pedigree, the bass could be appraised at a lower value—so they brought in the tree scientists.

Henri Grissino-Mayer from the University of Tennessee and Georgina G. Deweese of the University of West Georgia analyzed the rings in the bass's wood, and then compared the pattern to four reference tree-ring chronologies of European species. They were able to discern a 317-year age sequence in the wood, with rings dating from 1445 to 1761, indicating that the tree was harvested sometime after 1770. (Instrument-makers tended to strip off some of the outer layers of wood to make it more pliable.)

The researchers also suggested that the spruce tree from which the bass was made came from an alpine area of western Austria. From those clues, they concluded it was not crafted by the Amati brothers, but by a French maker in the late 18th century from Austrian lumber.

Nevertheless, the instrument remains revered thanks to its history alongside two of history's greatest bassists. Karr donated the instrument to the International Society of Bassists so that musicians can continue to play and learn from it. "I am determined to honor the original intentions of Olga Koussevitzky to present the double bass as a gift," Karr said at the time of the donation, "and it is my wish that the instrument leave my possession in the same manner."

Some Mathematicians Think the Equal Sign is On Its Way Out

Paperkites/iStock via Getty Images
Paperkites/iStock via Getty Images

A growing number of mathematicians are skeptical that the equal sign, traditionally used to show exact relationships between sets of objects, holds up to new mathematical models, WIRED reports.

To understand their arguments, it’s important to understand set theory—a theory of mathematics that’s been around since at least the 1870s [PDF]. Take the classic formula 1+1=2. Say you have four pieces of fruit—an apple, an orange, and two bananas—and you put the apple and the orange on one side of a table and the two bananas on the other. In set theory, that’s an equation: One piece of fruit plus one piece of fruit on the left side of the table equals two pieces of fruit on the right side of the table. The two sets, or collections of objects, are the same size, so they’re equal.

But here’s where it gets complicated. What if you put an apple and a banana on the left side of the table and an orange and a banana on the other side? That’s clearly different from the first scenario, but set theory writes it as the same thing: 1+1=2. What if you switched the order of the first set of objects, so instead of having an apple and an orange, you had an orange and an apple? What if you had only bananas? There are potentially infinite scenarios, but set theory is limited to expressing them all in only one way.

“The problem is, there are many ways to pair up,” Joseph Campbell, a mathematics professor at Duke University, told Quanta Magazine. “We’ve forgotten them when we say ‘equals.’”

A better alternative is the idea of equivalence, some mathematicians say [PDF]. Equality is a strict relationship, but equivalence comes in different forms. The two-bananas-on-each-side-of-the-table scenario is considered strong equivalence—all of the elements in both sets are the same. The scenario where you have an apple and an orange on one side and two bananas on the other? That’s a slightly weaker form of equivalence.

A new wave of mathematicians is turning to the idea of category theory [PDF], which is based in understanding the relationships between different objects. Category theory is better than set theory at dealing with equivalence, and it’s also more universally applicable to different branches of mathematics.

But a switch to category theory won’t come overnight, according to Quanta. Interpreting equations using equivalence rather than equality is much more complicated, and it requires relearning and rewriting everything about mathematics—even down to algebra and arithmetic.

“This complicates matters enormously, in a way that makes it seem impossible to work with this new version of mathematics we’re imagining,” mathematician David Ayala told Quanta.

Several mathematicians are at the forefront of category theory research, but the field is still relatively young. So while the equal sign isn’t passé just yet, it’s likely that an oncoming mathematical revolution will change its meaning.

[h/t Wired]

7 Facts About Blood

Moussa81/iStock via Getty Images
Moussa81/iStock via Getty Images

Everyone knows that when you get cut, you bleed—a result of the constant movement of blood through our bodies. But do you know all of the functions the circulatory system actually performs? Here are some surprising facts about human blood—and a few cringe-worthy theories that preceded the modern scientific understanding of this vital fluid.

1. Doctors still use bloodletting and leeches to treat diseases.

Ancient peoples knew the circulatory system was important to overall health. That may be one reason for bloodletting, the practice of cutting people to “cure” everything from cancer to infections to mental illness. For the better part of two millennia, it persisted as one of the most common medical procedures.

Hippocrates believed that illness was caused by an imbalance of four “humors”—blood, phlegm, black bile, and yellow bile. For centuries, doctors believed balance could be restored by removing excess blood, often by bloodletting or leeches. It didn’t always go so well. George Washington, for example, died soon after his physician treated a sore throat with bloodletting and a series of other agonizing procedures.

By the mid-19th century, bloodletting was on its way out, but it hasn’t completely disappeared. Bloodletting is an effective treatment for some rare conditions like hemochromatosis, a hereditary condition causing your body to absorb too much iron.

Leeches have also made a comeback in medicine. We now know that leech saliva contains substances with anti-inflammatory, antibiotic, and anesthetic properties. It also contains hirudin, an enzyme that prevents clotting. It lets more oxygenated blood into the wound, reducing swelling and helping to rebuild tiny blood vessels so that it can heal faster. That’s why leeches are still sometimes used in treating certain circulatory diseases, arthritis, and skin grafting, and helps reattach fingers and toes. (Contrary to popular belief, even the blood-sucking variety of leech is not all that interested in human blood.)

2. Scientists didn't understand how blood circulation worked until the 17th century.

William Harvey, an English physician, is generally credited with discovering and demonstrating the mechanics of circulation, though his work developed out of the cumulative body of research on the subject over centuries.

The prevailing theory in Harvey’s time was that the lungs, not the heart, moved blood through the body. In part by dissecting living animals and studying their still-beating hearts, Harvey was able to describe how the heart pumped blood through the body and how blood returned to the heart. He also showed how valves in veins helped control the flow of blood through the body. Harvey was ridiculed by many of his contemporaries, but his theories were ultimately vindicated.

3. Blood types were discovered in the early 20th century.

Austrian physician Karl Landsteiner discovered different blood groups in 1901, after he noticed that blood mixed from people with different types would clot. His subsequent research classified types A, B and O. (Later research identified an additional type, AB). Blood types are differentiated by the kinds of antigens—molecules that provoke an immune system reaction—that attach to red blood cells.

People with Type A blood have only A antigens attached to their red cells but have B antigens in their plasma. In those with Type B blood, the location of the antigens is reversed. Type O blood has neither A nor B antigens on red cells, but both are present in the plasma. And finally, Type AB has both A and B antigens on red cells but neither in plasma. But wait, there’s more! When a third antigen, called the Rh factor, is present, the blood type is classified as positive. When Rh factor is absent, the blood type is negative.

Scientists still don’t understand why humans have different blood types, but knowing yours is important: Some people have life-threatening reactions if they receive a blood type during a transfusion that doesn’t “mix” with their own. Before researchers developed reliable ways to detect blood types, that tended to turn out badly for people receiving an incompatible human (or animal!) blood transfusion.

4. Blood makes up about 8 percent of our total body weight.

Adult bodies contain about 5 liters (5.3 quarts) of blood. An exception is pregnant women, whose bodies can produce about 50 percent more blood to nourish a fetus.)

Plasma, the liquid portion of blood, accounts for about 3 liters. It carries red and white blood cells and platelets, which deliver oxygen to our cells, fight disease, and repair damaged vessels. These cells are joined by electrolytes, antibodies, vitamins, proteins, and other nutrients required to maintain all the other cells in the body.

5. A healthy red blood cell lasts for roughly 120 days.

Red blood cells contain an important protein called hemoglobin that delivers oxygen to all the other cells in our bodies. It also carries carbon dioxide from those cells back to the lungs.

Red blood cells are produced in bone marrow, but not everyone produces healthy ones. People with sickle cell anemia, a hereditary condition, develop malformed red blood cells that get stuck in blood vessels. These blood cells last about 10 to 20 days, which leads to a chronic shortage of red blood cells, often causing to pain, infection, and organ damage.

6. Blood might play a role in treating Alzheimer's disease.

In 2014, research led by Stanford University scientists found that injecting the plasma of young mice into older mice improved memory and learning. Their findings follow years of experiments in which scientists surgically joined the circulatory systems of old and young mice to test whether young blood could reverse signs of aging. Those results showed rejuvenating effects of a particular blood protein on the organs of older mice.

The Stanford team’s findings that young blood had positive effects on mouse memory and learning sparked intense interest in whether it could eventually lead to new treatments for Alzheimer’s disease and other age-related conditions.

7. The sight of blood can make people faint.

For 3 to 4 percent of people, squeamishness associated with blood, injury, or invasive medical procedures like injections rises to the level of a true phobia called blood injury injection phobia (BII). And most sufferers share a common reaction: fainting.

Most phobias cause an increase in heart rate and blood pressure, and often muscle tension, shakes, and sweating: part of the body’s sympathetic nervous system’s “fight or flight” response. But sufferers of BII experience an added symptom. After initially increasing, their blood pressure and heart rate will abruptly drop.

This reaction is caused by the vagus nerve, which works to keep a steady heart rate, among other things. But the vagus nerve sometimes overdoes it, pushing blood pressure and heart rate too low. (You may have experienced this phenomenon if you’ve ever felt faint while hungry, dehydrated, startled, or standing up too fast.) For people with BII, the vasovagal response can happen at the mere sight or suggestion of blood, needles, or bodily injury, making even a routine medical or dental checkup cause for dread and embarrassment.

SECTIONS

arrow
LIVE SMARTER