Neutron Star Collision Sheds Light on the Strange Matter That Weighs a Billion Tons Per Teaspoon
Neutron stars are among the many mysteries of the universe scientists are working to unravel. The celestial bodies are incredibly dense, and their dramatic deaths are one of the main sources of the universe’s gold. But beyond that, not much is known about neutron stars, not even their size or what they’re made of. A new stellar collision reported earlier this year may shed light on the physics of these unusual objects.
As Science News reports, the collision of two neutron stars—the remaining cores of massive stars that have collapsed—were observed via light from gravitational waves. When the two small stars crossed paths, they merged to create one large object. The new star collapsed shortly after it formed, but exactly how long it took to perish reveals keys details of its size and makeup.
One thing scientists know about neutron stars is that they’re really, really dense. When stars become too big to support their own mass, they collapse, compressing their electrons and protons together into neutrons. The resulting neutron star fits all that matter into a tight space—scientists estimate that one teaspoon of the stuff inside a neutron star would weigh a billion tons.
This type of matter is impossible to recreate and study on Earth, but scientists have come up with a few theories as to its specific properties. One is that neutron stars are soft and yielding like stellar Play-Doh. Another school of thought posits that the stars are rigid and equipped to stand up to extreme pressure.
According to simulations, a soft neutron star would take less time to collapse than a hard star because they’re smaller. During the recently recorded event, astronomers observed a brief flash of light between the neutron stars’ collision and collapse. This indicates that a new spinning star, held together by the speed of its rotation, existed for a few milliseconds rather than collapsing immediately and vanishing into a black hole. This supports the hard neutron star theory.
Armed with a clearer idea of the star’s composition, scientists can now put constraints on their size range. One group of researchers pegged the smallest possible size for a neutron star with 60 percent more mass than our sun at 13.3 miles across. At the other end of the spectrum, scientists are determining that the biggest neutron stars become smaller rather than larger. In the collision, a larger star would have survived hours or potentially days, supported by its own heft, before collapsing. Its short existence suggests it wasn’t so huge.
Astronomers now know more about neutron stars than ever before, but their mysterious nature is still far from being fully understood. The matter at their core, whether free-floating quarks or subatomic particles made from heavier quarks, could change all of the equations that have been written up to this point. Astronomers will continue to search the skies for clues that demystify the strange objects.
[h/t Science News]