Scientists May Have Found the Real Cause of Dyslexia—And a Way to Treat It

iStock
iStock | iStock

Dyslexia is often described as trying to read letters as they jump around the page. Because of its connections to reading difficulties and trouble in school, the condition is often blamed on the brain. But according to a new study published in Proceedings of the Royal Society B, the so-called learning disability may actually start in the eyes.

As The Guardian reports, a team of French scientists say they've discovered a key physiological difference between the eyes of those with dyslexia and those without it. Our eyes have tiny light-receptor cells called rods and cones. The center of a region called the fovea is dominated by cones, which are also responsible for color perception.

Just as most of us have a dominant hand, most have a dominant eye too, which has more neural connections to the brain. The study of 60 people, divided evenly between those with dyslexia and those without, found that in the eyes of non-dyslexic people, the arrangement of the cones is asymmetrical: The dominant eye has a round, cone-free hole, while the other eye has an unevenly shaped hole. However, in people with dyslexia, both eyes have the same round hole. So when they're looking at something in front of them, such as a page in a book, their eyes perceive exact mirror images, which end up fighting for visual domination in the brain. This could explain why it's sometimes impossible for a dyslexic person to distinguish a "b" from a "d" or an "E" from a "3".

These results challenge previous research that connects dyslexia to cognitive abilities. In a study published earlier this year, people with the condition were found to have a harder time remembering musical notes, faces, and spoken words. In light of the new findings, it's unclear whether this is at the root of dyslexia or if growing up with vision-related reading difficulties affects brain plasticity.

If dyslexia does come down to some misarranged light-receptors in the eye, diagnosing the disorder could be as simple as giving an eye exam. The explanation could also make it easy to treat without invasive surgery. In the study, the authors describe using an LED lamp that blinks faster than the human eye can perceive to "cancel out" one of the mirror images perceived by dyslexic readers, leaving only one true image. The volunteers who read with it called it a "magic lamp." The researchers hope to further experiment with it to see see if it's a viable treatment option for the millions of people living with dyslexia.