If Beer and Bread Use Almost the Exact Same Ingredients, Why Isn't Bread Alcoholic?


If beer and bread use almost the exact same ingredients (minus hops) why isn't bread alcoholic?

Josh Velson:

All yeast breads contain some amount of alcohol. Have you ever smelled a rising loaf of bread or, better yet, smelled the air underneath dough that has been covered while rising? It smells really boozy. And that sweet smell that fresh-baked bread has under the yeast and nutty Maillard reaction notes? Alcohol.

However, during the baking process, most of the alcohol in the dough evaporates into the atmosphere. This is basically the same thing that happens to much of the water in the dough as well. And it’s long been known that bread contains residual alcohol—up to 1.9 percent of it. In the 1920s, the American Chemical Society even had a set of experimenters report on it.

Anecdotally, I’ve also accidentally made really boozy bread by letting a white bread dough rise for too long. The end result was that not enough of the alcohol boiled off, and the darned thing tasted like alcohol. You can also taste alcohol in the doughy bits of underbaked white bread, which I categorically do not recommend you try making.

Putting on my industrial biochemistry hat here, many [people] claim that alcohol is only the product of a “starvation process” on yeast once they run out of oxygen. That’s wrong.

The most common brewers and bread yeasts, of the Saccharomyces genus (and some of the Brettanomyces genus, also used to produce beer), will produce alcohol in both a beer wort
and in bread dough immediately, regardless of aeration. This is actually a surprising result, as it runs counter to what is most efficient for the cell (and, incidentally, the simplistic version of yeast biology that is often taught to home brewers). The expectation would be that the cell would perform aerobic respiration (full conversion of sugar and oxygen to carbon dioxide and water) until oxygen runs out, and only then revert to alcoholic fermentation, which runs without oxygen but produces less energy.

Instead, if a Saccharomyces yeast finds itself in a high-sugar environment, regardless of the presence of air it will start producing ethanol, shunting sugar into the anaerobic respiration pathway while still running the aerobic process in parallel. This phenomenon is known as the Crabtree effect, and is speculated to be an adaptation to suppress competing organisms
in the high-sugar environment because ethanol has antiseptic properties that yeasts are tolerant to but competitors are not. It’s a quirk of Saccharomyces biology that you basically only learn about if you spent a long time doing way too much yeast cell culture … like me.

This post originally appeared on Quora. Click here to view.

Is There An International Standard Governing Scientific Naming Conventions?


Jelle Zijlstra:

There are lots of different systems of scientific names with different conventions or rules governing them: chemicals, genes, stars, archeological cultures, and so on. But the one I'm familiar with is the naming system for animals.

The modern naming system for animals derives from the works of the 18th-century Swedish naturalist Carl von Linné (Latinized to Carolus Linnaeus). Linnaeus introduced the system of binominal nomenclature, where animals have names composed of two parts, like Homo sapiens. Linnaeus wrote in Latin and most his names were of Latin origin, although a few were derived from Greek, like Rhinoceros for rhinos, or from other languages, like Sus babyrussa for the babirusa (from Malay).

Other people also started using Linnaeus's system, and a system of rules was developed and eventually codified into what is now called the International Code of Zoological Nomenclature (ICZN). In this case, therefore, there is indeed an international standard governing naming conventions. However, it does not put very strict requirements on the derivation of names: they are merely required to be in the Latin alphabet.

In practice a lot of well-known scientific names are derived from Greek. This is especially true for genus names: Tyrannosaurus, Macropus (kangaroos), Drosophila (fruit flies), Caenorhabditis (nematode worms), Peromyscus (deermice), and so on. Species names are more likely to be derived from Latin (e.g., T. rex, C. elegans, P. maniculatus, but Drosophila melanogaster is Greek again).

One interesting pattern I've noticed in mammals is that even when Linnaeus named the first genus in a group by a Latin name, usually most later names for related genera use Greek roots instead. For example, Linnaeus gave the name Mus to mice, and that is still the genus name for the house mouse, but most related genera use compounds of the Greek-derived root -mys (from μῦς), which also means "mouse." Similarly, bats for Linnaeus were Vespertilio, but there are many more compounds of the Greek root -nycteris (νυκτερίς); pigs are Sus, but compounds usually use Greek -choerus (χοῖρος) or -hys/-hyus (ὗς); weasels are Mustela but compounds usually use -gale or -galea (γαλέη); horses are Equus but compounds use -hippus (ἵππος).

This post originally appeared on Quora. Click here to view.

Can Soap Get Dirty?


When you see lovely little bars of lemon-thyme or lavender hand soaps on the rim of a sink, you know they are there to make you feel as fresh as a gardenia-scented daisy. We all know washing our hands is important, but, like washcloths and towels, can the bars of hand soap we use to clean ourselves become dirty as well?

Soaps are simply mixtures of sodium or potassium salts derived from fatty acids and alkali solutions during a process called saponification. Each soap molecule is made of a long, non-polar, hydrophobic (repelled by water) hydrocarbon chain (the "tail") capped by a polar, hydrophilic (water-soluble) "salt" head. Because soap molecules have both polar and non-polar properties, they're great emulsifiers, which means they can disperse one liquid into another.

When you wash your dirty hands with soap and water, the tails of the soap molecules are repelled by water and attracted to oils, which attract dirt. The tails cluster together and form structures called micelles, trapping the dirt and oils. The micelles are negatively charged and soluble in water, so they repel each other and remain dispersed in water—and can easily be washed away.

So, yes, soap does indeed get dirty. That's sort of how it gets your hands clean: by latching onto grease, dirt and oil more strongly than your skin does. Of course, when you're using soap, you're washing all those loose, dirt-trapping, dirty soap molecules away, but a bar of soap sitting on the bathroom counter or liquid soap in a bottle can also be contaminated with microorganisms.

This doesn't seem to be much of a problem, though. In the few studies that have been done on the matter, test subjects were given bars of soap laden with E. coli and other bacteria and instructed to wash up. None of the studies found any evidence of bacteria transfer from the soap to the subjects' hands. (It should be noted that two of these studies were conducted by Procter & Gamble and the Dial Corp., though no contradictory evidence has been found.)

Dirty soap can't clean itself, though. A contaminated bar of soap gets cleaned via the same mechanical action that helps clean you up when you wash your hands: good ol' fashioned scrubbing. The friction from rubbing your hands against the soap, as well as the flushing action of running water, removes any harmful microorganisms from both your hands and the soap and sends them down the drain.

This story was updated in 2019.