11 Booming Facts About Thunderstorms

iStock
iStock

Thunderstorms can inspire the entire range of human emotion with their vivid displays of nature's fury. Storms are used to set an ominous tone in spooky stories, even as they bring much-needed relief to parched fields or distressed humans on a hot day. These torrents are as fascinating to study as they are to watch, and as common as they are, they're actually quite complex.

1. WHAT GOES UP …

Warm, moist air is the fuel that feeds a thunderstorm the energy it needs to survive. A column of warm air quickly rising through the atmosphere is known as an updraft, and these upward winds can pack a punch. The strength of an updraft depends on how great the temperature difference is between different levels of the atmosphere. An updraft can exceed 100 mph in the strongest thunderstorms.

2. THE TOP OF THE STORM GETS SMOOSHED.

An updraft will continue skyward until the rising air is no longer warmer than the air around it. The rising air spreads out at this point, creating flat, anvil-like clouds that make a distant thunderstorm such a spectacular sight. Even more stunning are mammatus clouds, bubble-shaped formations that can develop along the bottom of anvils. Due to the strength of the storm needed to produce these vivid formations, they're often associated with severe thunderstorms.

3. RAIN DRAGS A STORM DOWN.

Once the weight of the raindrops suspended in a budding thunderstorm grows too heavy for the updraft to hold, or once raindrops fall out of the sides of the updraft, they begin falling to the ground as precipitation. The falling rain drags cooler air toward the ground, creating a downdraft, or that cool breeze you feel before and during a storm. Most downdrafts are pretty weak, but some are strong enough to cause damaging winds at the surface. A thunderstorm dies once the cool air of the downdraft cuts off the flow of warm air to the updraft, starving the storm and causing it to rain itself out.

4. THERE ARE DIFFERENT TYPES OF THUNDERSTORMS.

Not all thunderstorms are the same. There are three main types of thunderstorms. Most thunderstorms are single-cell, or a storm that pulses up, rains for half an hour, and dissipates. When that storm collapses, the wind from its downdraft can trigger more storms in a chain reaction. There are also multi-cell thunderstorms, the most common of which are squall lines. The third type of storm is a supercell, or a thunderstorm that has a rotating updraft. The twisting updraft helps supercells survive for many hours and produce more severe weather—larger hail, higher winds, and stronger tornadoes—than a normal thunderstorm.

5. HAIL BOUNCES AROUND LIKE POPCORN.

If temperatures are just right in the middle of a thunderstorm, some of the raindrops will begin to freeze as they bounce around in the updraft. The up-down motion of the newly formed hailstone will cause more liquid to accumulate on the outside of the stone, a process that causes hailstones to grow in layers like an onion. The vast majority of hail isn't large enough to cause any damage, but the updrafts in some thunderstorms are so intense that they can support hailstones the size of softballs or larger.

6. THUNDERSTORMS ARE ELECTRIFYING.

The friction between ice crystals, raindrops, and hailstones moving around in a storm can cause an electrostatic buildup between the clouds and the ground that releases its energy in a brilliant flash of lightning. Lightning is hotter than the surface of the Sun, heating the air up so fast that the shockwave radiates out in a sonic boom we hear as thunder. All thunder is caused by lightning, and all lightning causes thunder. There's no such thing as "heat lightning," a term used to describe lightning seen in the distance not accompanied by thunder. This phenomenon is simply lightning that occurs too far away for you to hear the thunder.

7. STORMS ARE PRETTY HEAVY.

Water is heavy. We look at clouds floating effortlessly through the sky and don't think about the sheer amount of weight hanging above our heads. One cumulus cloud can weigh more than 1 million pounds. When it comes to a billowing thunderstorm, though, the weight can go up tremendously depending on how much rain it's holding. We're lucky the rain doesn't all fall at once.

8. THEY BLOCK OUT THE SUN.

All of that water looming above us also has the effect of blotting out the sun. The sky gets dark before a thunderstorm because the sunshine can't make it through the vast column of water in an especially wet thunderstorm. The much-feared green sky before a storm, often thought to presage a tornado, is usually caused by sunlight refracting through both heavy rain and hailstones.

9. HUMANS CAN ACCIDENTALLY CAUSE THEM.

Humans can't control the weather, but our actions can indirectly influence where thunderstorms form. Studies have shown that increased temperatures in and around cities, due to the urban heat island effect, can trigger thunderstorms that wouldn't have otherwise formed in these areas if the city and its streets weren't there. There's also some evidence that unstable air warmed by steam released by the cooling stacks of nuclear power plants can trigger small storms.

10. IT CAN THUNDER WHEN IT'S SNOWING.

Thunder doesn't only happen when it's raining. Intense bands of snow can develop during blizzards and lake effect snow events in much the same way that a regular thunderstorm would form when it's warm out. These strong bands can produce lightning and loud cracks of thunder all while dumping copious amounts of snow in a short period of time.

11. YES, IT CAN RAIN FROGS.

There's some truth to the myth that it can rain frogs, fish, and other odd objects. If a strong tornado lofts debris high into a storm, that debris has to fall down somewhere. If a tornado sucks the water out of a pond, for example, it's very possible that the critters that used to be in the water will fall on populated areas. Hail can also form embedded with small pieces of debris like tree branches as the debris serves as a nucleus around which the water can freeze.

Denver is About to Experience Summer and Winter Temperatures Within 24 Hours

iStock.com/mphotoi
iStock.com/mphotoi

In a story tailor-made for exhaustive Weather Channel coverage, Denver, Colorado is about to experience one of the more bizarre weather shifts in recent memory. After an expected Tuesday high of 80°F, residents can anticipate a dramatic shift down to 32°F by midday Wednesday, with an initial half-inch of snow accumulation increasing to up to 7 inches by Wednesday night.

Put another way: Citizens who need to make sure they hydrate in the warm temperatures Tuesday will have to bring out the parkas the following day.

The Denver Post reports that the warm air coming ahead of the cold can result in a clash of air masses, prompting areas of low pressure that can create forceful and damaging weather conditions. The storm could bring winds of up to 60 miles per hour and possibly even cause power outages. Snow accumulation should dissipate by the weekend, when temperatures are expected to climb back into the 60s.

The high temperature record for April 9 in Denver is 81°F, set in 1977.

[h/t The Denver Post]

What Is a Bomb Cyclone?

Maddie Meyer/Getty Images
Maddie Meyer/Getty Images

The phrase bomb cyclone has re-entered the news this week as parts of the central U.S. face severe weather. Mountain and Midwestern states, including Colorado, Nebraska, Wyoming, and South Dakota, all fall in the path of a winter storm expected to deliver tornadoes, hail, heavy snow, flooding, and hurricane-force winds on Wednesday, March 13 into Thursday. It seems appropriate for a storm that strong to have bomb in its name, but the word actually refers to a meteorological phenomenon and not the cyclone's explosive intensity.

According to The Denver Post, the bomb in bomb cyclone stands for bombogenesis. Bombogenesis occurs when a non-tropical storm experiences at least a 24 millibar (the unit used to measure barometric pressure) drop within 24 hours. Low pressure makes for intense storms, so a bomb cyclone is a system that's built up a significant amount strength in a short length of time.

This type of storm usually depends on the ocean or another large body of water for its power. During the winter, the relatively warm air coming off the ocean and the cold air above land can collide to create a sharp drop in atmospheric pressure. Also known as a winter hurricane, this effect has produced some of the worst snowstorms to ever hit the U.S.

The fact that this latest bomb cyclone has formed nowhere near the coast makes it even more remarkable. Rather, a warm, subtropical air mass and a cold, Arctic air mass crossed paths, creating the perfect conditions for a rare bombogenesis over the Rockies and Great Plains states.

Central U.S. residents in the bomb cyclone's path have taken great precautions ahead of the storm. Over 1000 flights have been canceled for Wednesday and schools throughout Colorado have closed.

[h/t The Denver Post]

SECTIONS

arrow
LIVE SMARTER