Why Is the Southeast So Humid?

iStock
iStock

You don’t have to hop on a plane to visit the tropics when you live in the southeastern United States—it can often feel like you’re already there. It gets humid in this corner of the country. Not just regular humid, mind you, but so disgustingly moist that you can almost feel the air slosh across your skin as you walk out the front door. But what is it that makes the Southeast so humid compared to the rest of the country?

Mugginess during the summer is a problem just about everywhere you go in the United States. The corn fields of Iowa can see a higher dew point than a rainforest. But even there the steaminess doesn’t last as long as it does in the Southeast. Much of it has to do with the region’s proximity to the Gulf of Mexico, which usually feels like bathwater on a good day. The water in some parts of the Gulf of Mexico can heat up to 90°F during the peak of the summer, and the water isn’t quick to cool down once cold fronts start sweeping through in the fall and winter. The warmth of the Gulf and the Caribbean Sea to its south keep moisture in plentiful supply.

It’s not just the water itself that contributes to the mugginess. The water vapor over the ocean doesn’t migrate inland on its own—weather patterns drag it inland and keep it locked in place. Strong winds blowing counterclockwise around low-pressure systems often help bring this tropical moisture inland, especially during the cooler months when you expect to shiver rather than sweat. During the summer, though, persistent ridges of high pressure keep the southeast feeling gross with a moist southerly wind. These “heat domes” deflect most weather systems approaching from the west, basically locking the Southeast into a state of sultriness for weeks and even months at a time.

The constant moisture isn’t merely uncomfortable—it can be downright dangerous. The human body is able to cool itself when sweat evaporates from the surface of exposed skin. But sweat has a harder time evaporating when there’s too much moisture in the air, which could cause a person to overheat. This phenomenon is measured with the heat index, and it’s the cause of thousands of heat-related illnesses and deaths every year.

All of that moisture makes both day and night downright miserable. If you’ve ever been to the desert during the warmer months, you know firsthand that even on a day when the high temperature exceeds 100°F, the mercury can plummet once the Sun goes down and get chilly enough to require a light jacket. The wild temperature fluctuations in desert regions are due to the dryness of the air there. Moist air has a higher heat capacity, so it takes a lot longer to warm up and cool off.

Meanwhile, the gross humidity levels in the Southeast on most days keep it from getting excessively hot, but it also keeps the nights from cooling off very much. The lack of nighttime relief compounds the danger posed by heat and humidity.

12 Powerful Facts About Hurricanes

iStock/shaunl
iStock/shaunl

Hurricanes are a stunning, and dangerous, display of nature’s power. They’re some of the largest and most intense storms nature can produce. Today, we know more about these systems and have an easier time measuring and predicting them than ever before. There’s more than meets the eye when it comes to hurricanes. As the 2019 hurricane season kicks off (it runs from June 1st through November 30th), here are some things you might not know about these dangerous storms.

1. Hurricanes are only "hurricanes" around North America.

A tropical cyclone is a compact, low-pressure system fueled by thunderstorms that draw energy from the heat generated by warm ocean waters. These tropical cyclones acquire different names depending on how strong they are and where in the world they form. A mature tropical cyclone is called a hurricane in the Atlantic and eastern Pacific Oceans. What’s known as a hurricane in the Atlantic is called a typhoon near Asia and simply a cyclone everywhere else in the world.

2. Hurricanes come in all shapes and sizes.

Not all hurricanes are picture-perfect. Some storms can look so disorganized that it takes an expert eye and advanced technology to spot them. A full-fledged hurricane can be as small as a few dozen miles across or as large as one-half of the United States, as was the case with Typhoon Tip in the western Pacific Ocean in 1979. The smallest tropical cyclone on record was 2008’s Tropical Storm Marco, a tiny storm in the Gulf of Mexico that almost made it to hurricane strength. Marco’s strong winds only extended 12 miles from the eye of the storm—a distance smaller than the length of Manhattan.

3. The greatest danger in a hurricane is in the eyewall.

The spiraling bands of wind and rain that radiate from the center of a hurricane are what give these storms their distinctive buzzsaw shape. These bands can cause damage, flooding, and even tornadoes, but the worst part of a hurricane is the eyewall, or the tight group of thunderstorms that rage around the center of the storm. The most severe winds in a hurricane usually occupy a small part of the eyewall just to the right of the storm’s forward motion, an area known as the right-front quadrant. The worst damage is usually found where this part of the storm comes ashore.

4. The eye of a hurricane is very warm.

The core of a hurricane is very warm—they are tropical, after all. The eye of a hurricane is formed by air rushing down from the upper levels of the atmosphere to fill the void left by the low air pressure at the surface. Air dries out and warms up as it rapidly descends through the eye toward the surface. This allows temperatures in the eye of a strong hurricane to exceed 80°F thousands of feet above the Earth's surface, where it’s typically much colder.

5. You can tell a lot about a hurricane by its eye.

Like humans, you can tell a lot about a hurricane by looking it in the eye. A ragged, asymmetrical eye means that the storm is struggling to strengthen. A smooth, round eye means that the storm is both stable and quite strong. A tiny eye—sometimes called a pinhole or pinpoint eye—is usually indicative of a very intense storm.

6. Some hurricanes have two eyes.

An eye doesn’t last forever. Storms frequently encounter a process known as an “eyewall replacement cycle,” which is where a storm develops a new eyewall to replace the old one. A storm weakens during one of these cycles, but it can quickly grow even more intense than it originally was once the replacement cycle is completed. When Hurricane Matthew scraped the Florida coast in October 2016, the storm’s impacts were slightly less severe because the storm underwent an eyewall replacement cycle just as it made its closest approach to land.

7. The strong winds that a hurricane creates are only part of the danger.

While strong winds get the most coverage on the news, wind isn’t always the most dangerous part of the storm. More than half of all deaths that result from a landfalling hurricane are due to the storm surge, or the sea water that gets pushed inland by a storm’s strong winds. Most storm surges are relatively small and only impact the immediate coast, but in a larger storm like Katrina or Sandy, the wind can push deep water so far inland that it completely submerges homes many miles from the coast.

8 California rarely sees tropical cyclones.

It can seem odd that California occupies hundreds of miles of coastline but always seems to evade the hurricane threat faced by the East Coast. California almost never sees tropical cyclones because the ocean is simply too cold to sustain a storm. Only a handful of tropical cyclones have ever reached California in recorded history—the worst hit San Diego in 1858. The San Diego Hurricane was an oddity that’s estimated to have reached category 1 intensity as it brushed the southern half of the Golden State.

9. Hurricane hunters fly planes into storms.

Aside from satellite and radar imagery, it’s pretty hard to know exactly what a hurricane is doing unless it passes directly over a buoy or a ship. This is where the Hurricane Hunters come in, a brave group of scientists with the United States Air Force and NOAA who fly specially outfitted airplanes directly into the worst of a storm to measure its winds and report back their findings. This practice began during World War II and has become a mainstay of hurricane forecasting in the decades since.

10. Hurricane hunters drop sensors to measure waves.

The Hurricane Hunters assess the storm with all sorts of tools that measure temperature, pressure, wind, and moisture, and have weather radar onboard to give them a detailed view of the entire storm. They regularly release dropsondes to "read" the inside of the storm. Dropsondes are like weather balloons in reverse: instead of launching weather sensors from the ground into the sky, they drop them down through the sky to the ground. The Hurricane Hunters also have innovative sensors that measure waves and sea foam and use the data to accurately estimate how strong the winds are at the surface.

11. We started naming storms to keep track of them.

Meteorologists in the United States officially started naming tropical storms and hurricanes in the 1950s to make it easier to keep track in forecasts and news reports. Since then, naming tropical cyclones has become a worldwide effort coordinated by the World Meteorological Organization, the United Nations agency responsible for maintaining meteorological standards. Today, the Atlantic Ocean and eastern Pacific Ocean each receive a list of alternating masculine and feminine names that are reused every six years.

12. Names are retired if the storm was especially destructive.

If a storm is particularly destructive or deadly, the WMO will “retire” the name from official lists so it’s never used again out of respect for the families of the storm’s victims and survivors. When a name is retired, another name starting with the same letter takes its place. More than 80 names have been retired from the Atlantic Ocean’s list of names since 1954. Earlier this year, it was announced that the names Florence and Michael were being retired as a result of the damage they caused during the 2018 hurricane season; they will be replaced with Francine and Milton when the list is reused in 2024.

This piece originally ran in 2017; it has been updated for 2019.

Denver is About to Experience Summer and Winter Temperatures Within 24 Hours

iStock.com/mphotoi
iStock.com/mphotoi

In a story tailor-made for exhaustive Weather Channel coverage, Denver, Colorado is about to experience one of the more bizarre weather shifts in recent memory. After an expected Tuesday high of 80°F, residents can anticipate a dramatic shift down to 32°F by midday Wednesday, with an initial half-inch of snow accumulation increasing to up to 7 inches by Wednesday night.

Put another way: Citizens who need to make sure they hydrate in the warm temperatures Tuesday will have to bring out the parkas the following day.

The Denver Post reports that the warm air coming ahead of the cold can result in a clash of air masses, prompting areas of low pressure that can create forceful and damaging weather conditions. The storm could bring winds of up to 60 miles per hour and possibly even cause power outages. Snow accumulation should dissipate by the weekend, when temperatures are expected to climb back into the 60s.

The high temperature record for April 9 in Denver is 81°F, set in 1977.

[h/t The Denver Post]

SECTIONS

arrow
LIVE SMARTER