How a Pinwheeling Weather System Brought Floods and Tornadoes to the Heartland

An infrared satellite image from the new GOES-16 satellite showing thunderstorms exploding in the Midwest on the evening of April 28, 2017.
An infrared satellite image from the new GOES-16 satellite showing thunderstorms exploding in the Midwest on the evening of April 28, 2017.
College of DuPage

An active month for severe weather went out with a bang this weekend when waves of powerful thunderstorms slammed the central United States, causing widespread flooding across the Midwest and several destructive tornadoes in Texas. The storm was so large and dynamic that it even caused a historic blizzard in western Kansas. The system responsible for the damage may be out of the picture now, but the dangerous effects of the tropical downpours will linger through next weekend.

A large, pinwheeling low-pressure system developed over the Plains late on Friday, April 28, 2017, setting the stage for a rambunctious couple of days in the American heartland. Counterclockwise winds flowing around the low-pressure system dragged deep plumes of tropical moisture northward from the Gulf of Mexico, allowing a warm, muggy air mass to crash into a cooler air mass lingering over states like Missouri, Illinois, and Indiana. The leading edge of this muggy air—a warm front—served as the focus for explosive thunderstorm development on Friday night and Saturday.


Estimated rainfall amounts between the evenings of April 27 and April 30, 2017. Areas in red saw five or more inches of rain. The pink shading indicates 10 or more inches of rain.
Dennis Mersereau

Unlike most organized batches of thunderstorms, which typically rage over one area for a few hours before moving on or dissipating, these torrents stuck around for almost an entire day, dumping copious amounts of rain over the Ohio and Mississippi River valleys as they rode along the boundary between warm to the south and cool to the north. This phenomenon, known as “training” due to thunderstorms rolling over the same areas like train cars on railroad tracks, is typically responsible for the worst flash flooding that storms can produce. Some communities recorded more than 10 inches of rain in just one day, which is more than double the normal amount of rain these areas see on average during the entire month of April.

At least 10 people died due to flooding across the Midwest, according to a report by The Weather Channel, and countless more residents were rescued from homes and vehicles when the water rose too quickly for them to evacuate on their own. Almost all of the confirmed flooding deaths this past weekend occurred in vehicles; the National Weather Service notes that nearly half of all flash flood deaths that occur every year are the result of people drowning in their vehicles.

The flooding isn’t over yet. Rivers in the region will continue to rise as the slow runoff overwhelms area waterways. At least two dozen gauges that measure water height in rivers across the areas affected by the heavy rain reported major flooding on Sunday, April 30, with numerous rivers expecting near-record flooding through the end of the week. The Mississippi River at Cape Girardeau, Missouri, is expected to crest at 48.5 feet on Friday, May 5, just shy of the all-time record high water mark set at this location in 2016 and a little bit above the historic and devastating flooding measured in 1993. The Mississippi River in St. Louis, Missouri, will likely reach major flood stage on Wednesday, May 3, though the crest will fall nearly 10 feet short of the record set back in 1993.

Flooding wasn’t the only concern with the storms this weekend. Meteorologists confirmed on Sunday that three tornadoes swept through the town of Canton, Texas, on Saturday evening, killing at least four people and injuring dozens more as the twisters caused significant damage.

Canton, a small town about 55 miles east of Dallas, Texas, saw all three tornadoes in the span of one hour, which is extremely rare but can happen from time to time. The first tornado hit the western side of town, while the second tornado struck the eastern side of town less than an hour later. A smaller tornado touched down just north of Canton in between the tracks of the two larger tornadoes.

The National Weather Service rated the first Canton tornado a violent EF-4, the second-highest level on the Enhanced Fujita Scale, while the second tornado received an EF-3 rating. Survey crews found that three additional tornadoes touched down in the area, including the one that struck the north side of Canton. All three small tornadoes produced minor damage and received the lowest rating, an EF-0.


Observed snowfall totals through the evening of April 30, 2017.

Dennis Mersereau

The eastern side of the storm may have seen a classic springtime severe weather outbreak, but the western side of the system didn’t quite get the memo that it’s the end of April. Portions of the Rocky Mountains and western Plains saw a significant snowstorm this past weekend. A large swath of western Kansas saw more than a foot of snow, with some areas coming close to 20 inches by the time the skies cleared out. This snowstorm ranks among the largest snowstorms ever recorded in western Kansas during the month of April, and could easily be the biggest snowstorm ever recorded so late in the year across areas that should see supercells instead of snow squalls.

12 Powerful Facts About Hurricanes

iStock/shaunl
iStock/shaunl

Hurricanes are a stunning, and dangerous, display of nature’s power. They’re some of the largest and most intense storms nature can produce. Today, we know more about these systems and have an easier time measuring and predicting them than ever before. There’s more than meets the eye when it comes to hurricanes. As the 2019 hurricane season kicks off (it runs from June 1st through November 30th), here are some things you might not know about these dangerous storms.

1. Hurricanes are only "hurricanes" around North America.

A tropical cyclone is a compact, low-pressure system fueled by thunderstorms that draw energy from the heat generated by warm ocean waters. These tropical cyclones acquire different names depending on how strong they are and where in the world they form. A mature tropical cyclone is called a hurricane in the Atlantic and eastern Pacific Oceans. What’s known as a hurricane in the Atlantic is called a typhoon near Asia and simply a cyclone everywhere else in the world.

2. Hurricanes come in all shapes and sizes.

Not all hurricanes are picture-perfect. Some storms can look so disorganized that it takes an expert eye and advanced technology to spot them. A full-fledged hurricane can be as small as a few dozen miles across or as large as one-half of the United States, as was the case with Typhoon Tip in the western Pacific Ocean in 1979. The smallest tropical cyclone on record was 2008’s Tropical Storm Marco, a tiny storm in the Gulf of Mexico that almost made it to hurricane strength. Marco’s strong winds only extended 12 miles from the eye of the storm—a distance smaller than the length of Manhattan.

3. The greatest danger in a hurricane is in the eyewall.

The spiraling bands of wind and rain that radiate from the center of a hurricane are what give these storms their distinctive buzzsaw shape. These bands can cause damage, flooding, and even tornadoes, but the worst part of a hurricane is the eyewall, or the tight group of thunderstorms that rage around the center of the storm. The most severe winds in a hurricane usually occupy a small part of the eyewall just to the right of the storm’s forward motion, an area known as the right-front quadrant. The worst damage is usually found where this part of the storm comes ashore.

4. The eye of a hurricane is very warm.

The core of a hurricane is very warm—they are tropical, after all. The eye of a hurricane is formed by air rushing down from the upper levels of the atmosphere to fill the void left by the low air pressure at the surface. Air dries out and warms up as it rapidly descends through the eye toward the surface. This allows temperatures in the eye of a strong hurricane to exceed 80°F thousands of feet above the Earth's surface, where it’s typically much colder.

5. You can tell a lot about a hurricane by its eye.

Like humans, you can tell a lot about a hurricane by looking it in the eye. A ragged, asymmetrical eye means that the storm is struggling to strengthen. A smooth, round eye means that the storm is both stable and quite strong. A tiny eye—sometimes called a pinhole or pinpoint eye—is usually indicative of a very intense storm.

6. Some hurricanes have two eyes.

An eye doesn’t last forever. Storms frequently encounter a process known as an “eyewall replacement cycle,” which is where a storm develops a new eyewall to replace the old one. A storm weakens during one of these cycles, but it can quickly grow even more intense than it originally was once the replacement cycle is completed. When Hurricane Matthew scraped the Florida coast in October 2016, the storm’s impacts were slightly less severe because the storm underwent an eyewall replacement cycle just as it made its closest approach to land.

7. The strong winds that a hurricane creates are only part of the danger.

While strong winds get the most coverage on the news, wind isn’t always the most dangerous part of the storm. More than half of all deaths that result from a landfalling hurricane are due to the storm surge, or the sea water that gets pushed inland by a storm’s strong winds. Most storm surges are relatively small and only impact the immediate coast, but in a larger storm like Katrina or Sandy, the wind can push deep water so far inland that it completely submerges homes many miles from the coast.

8 California rarely sees tropical cyclones.

It can seem odd that California occupies hundreds of miles of coastline but always seems to evade the hurricane threat faced by the East Coast. California almost never sees tropical cyclones because the ocean is simply too cold to sustain a storm. Only a handful of tropical cyclones have ever reached California in recorded history—the worst hit San Diego in 1858. The San Diego Hurricane was an oddity that’s estimated to have reached category 1 intensity as it brushed the southern half of the Golden State.

9. Hurricane hunters fly planes into storms.

Aside from satellite and radar imagery, it’s pretty hard to know exactly what a hurricane is doing unless it passes directly over a buoy or a ship. This is where the Hurricane Hunters come in, a brave group of scientists with the United States Air Force and NOAA who fly specially outfitted airplanes directly into the worst of a storm to measure its winds and report back their findings. This practice began during World War II and has become a mainstay of hurricane forecasting in the decades since.

10. Hurricane hunters drop sensors to measure waves.

The Hurricane Hunters assess the storm with all sorts of tools that measure temperature, pressure, wind, and moisture, and have weather radar onboard to give them a detailed view of the entire storm. They regularly release dropsondes to "read" the inside of the storm. Dropsondes are like weather balloons in reverse: instead of launching weather sensors from the ground into the sky, they drop them down through the sky to the ground. The Hurricane Hunters also have innovative sensors that measure waves and sea foam and use the data to accurately estimate how strong the winds are at the surface.

11. We started naming storms to keep track of them.

Meteorologists in the United States officially started naming tropical storms and hurricanes in the 1950s to make it easier to keep track in forecasts and news reports. Since then, naming tropical cyclones has become a worldwide effort coordinated by the World Meteorological Organization, the United Nations agency responsible for maintaining meteorological standards. Today, the Atlantic Ocean and eastern Pacific Ocean each receive a list of alternating masculine and feminine names that are reused every six years.

12. Names are retired if the storm was especially destructive.

If a storm is particularly destructive or deadly, the WMO will “retire” the name from official lists so it’s never used again out of respect for the families of the storm’s victims and survivors. When a name is retired, another name starting with the same letter takes its place. More than 80 names have been retired from the Atlantic Ocean’s list of names since 1954. Earlier this year, it was announced that the names Florence and Michael were being retired as a result of the damage they caused during the 2018 hurricane season; they will be replaced with Francine and Milton when the list is reused in 2024.

This piece originally ran in 2017; it has been updated for 2019.

Denver is About to Experience Summer and Winter Temperatures Within 24 Hours

iStock.com/mphotoi
iStock.com/mphotoi

In a story tailor-made for exhaustive Weather Channel coverage, Denver, Colorado is about to experience one of the more bizarre weather shifts in recent memory. After an expected Tuesday high of 80°F, residents can anticipate a dramatic shift down to 32°F by midday Wednesday, with an initial half-inch of snow accumulation increasing to up to 7 inches by Wednesday night.

Put another way: Citizens who need to make sure they hydrate in the warm temperatures Tuesday will have to bring out the parkas the following day.

The Denver Post reports that the warm air coming ahead of the cold can result in a clash of air masses, prompting areas of low pressure that can create forceful and damaging weather conditions. The storm could bring winds of up to 60 miles per hour and possibly even cause power outages. Snow accumulation should dissipate by the weekend, when temperatures are expected to climb back into the 60s.

The high temperature record for April 9 in Denver is 81°F, set in 1977.

[h/t The Denver Post]

SECTIONS

arrow
LIVE SMARTER