The Expanding Universe: How the Universe Got Bigger As We Measured It

Since before history began, we have tried to understand our world and our place in it. To the earliest hunter-gatherer tribes, this meant little more than knowing the tribe's territory. But as people began to settle and trade, knowing the wider world became more important, and people became interested in the actual size of it. Aristarchus of Samos (310-230 BC) made the earliest surviving measurements of the distance between objects in space. By carefully measuring the apparent size of the Sun and Moon and carefully observing the terminator of the Moon when half full, he concluded that the Sun was 18-20 times farther away than the Moon. The actual value is 400, but he was on the right track; he just didn't have precise enough measurements.


A diagram from Aristarchus' work, "On Size and Distances," describing how to work out the relative distances.

/

Above left: A dioptra, a predecessor to both the astrolabe and the theodolite, of a type similar to the one Hipparchus used to make his measurements.

When Ptolemy (AD 90-168) came along, the Universe shrank for a while.

Using the epicycles he assumed must exist within his geocentric universe, he estimated the distance to the Sun to be 1,210 Earth radii, and the distance to the fixed stars to be 20,000 Earth radii away; using modern values for the Earth's average radius, that gives us 7,708,910 km to the Sun and 127,420,000 km to the fixed stars. Both of those are woefully small (Ptolemy's universe would fit within the orbit of Earth), but they get even smaller if we use his smaller estimate for the Earth's circumference -- he estimated the Earth to be about 1/6 the size it actually is. (And therein hangs a tale, for Christopher Columbus would try to use Ptolemy's figure when plotting his journey west to the Orient, rather than the more accurate ones that had been developed in Persia since then.)

/

By the end of the 16th Century, the size of the Earth was pretty well defined, but the size of the Universe remained challenging. Johannes Kepler solved the puzzle of orbital motion and calculated the ratio of the distance between Sun and various planets, enabling accurate predictions of transits. In 1639, Jeremiah Horrocks made the first known observation of a transit of Venus. He estimated the distance between Earth and the Sun at 95.6 million km, the most accurate estimate to date (and about 2/3 the actual distance). In 1676, Edmund Halley attempted to measure solar parallax during a transit of Mercury, but was unsatisfied with the only other observation made. He proposed that further observations be made during the next transit of Venus, in 1761. Unfortunately, he did not live that long.

/
/

Above left: Sketch depicting the transit circumstances, as reported by James Ferguson, a Scottish self-taught scientist and inventor who participated in the transit observations.

But the universe is bigger than the solar system. In the 1780s, William Herschel mapped the visible stars in an effort to find binary stars. He found quite a few, but he also worked out that the solar system was actually moving through space, and that the Milky Way was disk shaped. The galaxy, which was at that time synonymous with Universe, was eventually estimated to be about 30,000 light years across -- an inconceivably large distance, but still far too small.

/

Above left: Henrietta Leavitt, one of the few women in astronomy and the only one on this list; she got little recognition for her discovery at the time.

/

At left: The 100-inch telescope at Mount Wilson Observatory, where Hubble did his work. It was the world's largest telescope until 1948.

/

At left: Georges Lemaître, who happened to also be a Catholic priest. He died in 1966, shortly after learning about the Cosmic Microwave Background radiation, which further reinforced his theory of the Big Bang.

This was much too small, and in 1952, Walter Baade figured out why: there are actually two kinds of Cepheids, and Hubble had been observing the ones that Leavitt had not baselined. After characterizing this new population of Cepheids, he recalculated from Hubble's observations and brought the Universe's minimum age up to 3.6 billion years. In 1958, Allan Sandage improved it more, to an estimated 5.5 billion years.

Astronomers started to ratchet up their observations of ever more distant objects. In 1998, studies of very distant Type 1A supernovae revealed a new surprise: not only is the universe expanding, but the rate of the expansion is increasing. Today, the Universe is usually estimated to be 13.7 billion years old -- or, more accurately, the most distant things we can observe appear to be that far away. The catch, of course, is that we're observing them in the past. They're actually further away now -- assuming, of course, that they even still exist. A lot can happen in 13.75 billion years. And now that we know the universe's expansion is accelerating, they are even farther away by now. The current estimate for the actual size of the observable universe is 93 billion light-years in diameter, a tremendous size that the human brain cannot begin to fathom on its own, vastly overwhelming the tiny universe of the ancient Greeks.

/

The understanding of the size of the Universe has gone from being impressed by the distance to the Sun, to the size of the solar system, to the vastness of the galaxy, to the staggering distance to neighboring galaxies, to the mindbendingly complicated distances to things that we can only see as they were an impossibly long period of time ago. What will we discover as we measure the Universe tomorrow?