Why Does Your Nose Get Stuffy One Nostril at a Time?

iStock
iStock

Because your nostrils split their workload. Throughout the day, they each take breaks in a process of alternating congestion and decongestion called the nasal cycle. At a given moment, if you're breathing through your nose, the lion’s share of the air is going in and out of one nostril, with a much smaller amount passing through the other. Every few hours, your autonomic nervous system, which takes care of your heart rate, digestion and other things you don’t consciously control, switches things up and your other nostril does all the heavy lifting for a little while.  The opening and closing of the two passages is done by swelling and deflating erectile tissue - the same stuff that’s at work when your reproductive organs are aroused - up in your nose.

The nasal cycle is going on all the time, but when you’re sick and really congested, the extra mucous often makes the nostril that’s on break feel much more backed up.

There are at least two good reasons why nasal cycling happens.

One, it makes our sense of smell more complete. Different scent molecules degrade at different rates, and our scent receptors pick up on them accordingly. Some smells are easier to detect and process in a fast-moving airstream like the decongested nostril, while others are better detected in the slower airstream of the congested nostril. Nasal cycling also seems to keep the nose maintained for its function as an air filter and humidifier. The alternating congestion gives the mucous and cilia (the tiny hairs up in your nose) in each nostril a well-deserved break from the onslaught of air and prevents the insides of your nostrils from drying out, cracking and bleeding.

Another snot mystery: Why does my nose run when I cry?

When you cry, most of your tears spill over your lower eyelid and run down your face. Some of them, though, don’t quite make it over the hill and instead go back down into the tear ducts and into the nasal cavity, which is connected to the ducts. If you’re really bawling, you’ll have quite a few tears running down into the nose, and their salinity also helps loosen up mucous and get it flowing, giving you a runny nose.

A Simple Skin Swab Could Soon Identify People at Risk for Parkinson's

iStock.com/stevanovicigor
iStock.com/stevanovicigor

More than 200 years have passed since physician James Parkinson first identified the degenerative neurological disorder that bears his name. Over five million people worldwide suffer from Parkinson’s disease, a neurological condition characterized by muscle tremors and other symptoms. Diagnosis is based on those symptoms rather than blood tests, brain imaging, or any other laboratory evidence.

Now, science may be close to a simple and non-invasive method for diagnosing the disease based on a waxy substance called sebum, which people secrete through their skin. And it’s thanks to a woman with the unique ability to sniff out differences in the sebum of those with Parkinson's—years before a diagnosis can be made.

The Guardian describes how researchers at the University of Manchester partnered with a nurse named Joy Milne, a "super smeller" who can detect a unique odor emanating from Parkinson's patients that is unnoticeable to most people. Working with Tilo Kunath, a neurobiologist at Edinburgh University, Milne and the researchers pinpointed the strongest odor coming from the patients' upper backs, where sebum-emitting pores are concentrated.

For a new study in the journal ACS Central Science, the researchers analyzed skin swabs from 64 Parkinson's and non-Parkinson's subjects and found that three substances—eicosane, hippuric acid, and octadecanal—were present in higher concentrations in the Parkinson’s patients. One substance, perillic aldehyde, was lower. Milne confirmed that these swabs bore the distinct, musky odor associated with Parkinson’s patients.

Researchers also found no difference between patients who took drugs to control symptoms and those who did not, meaning that drug metabolites had no influence on the odor or compounds.

The next step will be to swab a a much larger cohort of Parkinson’s patients and healthy volunteers to see if the results are consistent and reliable. If these compounds are able to accurately identify Parkinson’s, researchers are optimistic that it could lead to earlier diagnosis and more effective interventions.

[h/t The Guardian]

World’s Oldest Stored Sperm Has Produced Some Healthy Baby Sheep

A stock photo of a lamb
A stock photo of a lamb
iStock.com/ananaline

It’s not every day that you stumble across a 50-year-old batch of frozen sheep sperm. So when Australian researchers rediscovered a wriggly little time capsule that had been left behind by an earlier researcher, they did the obvious: they tried to create some lambs. As Smithsonian reports, they pulled it off, too.

The semen, which came from several prize rams, had been frozen in 1968 by Dr. Steve Salamon, a sheep researcher from the University of Sydney. After bringing the sample out of storage, researchers thawed it out and conducted a few lab tests. They determined that its viability and DNA integrity were still intact, so they decided to put it to the ultimate test: Would it get a sheep pregnant? The sperm was artificially inseminated into 56 Merino ewes, and lo and behold, 34 of them became pregnant and gave birth to healthy lambs.

Of course, this experiment wasn’t just for fun. They wanted to test whether decades-old sperm—frozen in liquid nitrogen at -320°F—would still be viable for breeding purposes. Remarkably, the older sperm had a slightly higher pregnancy rate (61 percent) than sheep sperm that had been frozen for 12 months and used to impregnate ewes in a different experiment (in that case, the success rate was 59 percent).

“We believe this is the oldest viable stored semen of any species in the world and definitely the oldest sperm used to produce offspring,” researcher Dr. Jessica Rickard said in a statement.

Researchers say this experiment also lets them assess the genetic progress of selective breeding over the last five decades. “In that time, we’ve been trying to make better, more productive sheep [for the wool industry],” associate professor Simon de Graaf said. “This gives us a resource to benchmark and compare.”

[h/t Smithsonian]

SECTIONS

arrow
LIVE SMARTER