CLOSE

Name the 5 Areas of Chemistry

Original image
iStock
arrow
Food
How to Make Perfect Fried Chicken, According to Chemistry
Original image
iStock

Cooking amazing fried chicken isn’t just art—it’s also chemistry. Learn the science behind the sizzle by watching the American Chemical Society’s latest "Reactions" video below.

Host Kyle Nackers explains the three important chemical processes that occur as your bird browns in the skillet—hydrolysis, oxidation, and polymerization—and he also provides expert-backed cooking hacks to help you whip up the perfect picnic snack.

Original image
iStock
arrow
science
The Brain Chemistry Behind Your Caffeine Boost
Original image
iStock

Whether it’s consumed as coffee, candy, or toothpaste, caffeine is the world’s most popular drug. If you’ve ever wondered how a shot of espresso can make your groggy head feel alert and ready for the day, TED-Ed has the answer.

Caffeine works by hijacking receptors in the brain. The stimulant is nearly the same size and shape as adenosine, an inhibitory neurotransmitter that slows down neural activity. Adenosine builds up as the day goes on, making us feel more tired as the day progresses. When caffeine enters your system, it falls into the receptors meant to catch adenosine, thus keeping you from feeling as sleepy as you would otherwise. The blocked adenosine receptors also leave room for the mood-boosting compound dopamine to settle into its receptors. Those increased dopamine levels lead to the boost in energy and mood you feel after finishing your morning coffee.

For a closer look at how this process works, check out the video below.

[h/t TED-Ed]

SECTIONS