CLOSE
Original image
Getty Images

Can You Solve the Virus Riddle?

Original image
Getty Images

In this video riddle, you're a researcher who needs to solve a math problem. The fate of humanity is at stake!

Here's the setup. Your research group has isolated a lethal virus and is studying it in a lab. But one night after you leave the lab, an earthquake strikes and breaks the virus vials. This means that 15 of the 16 rooms in the lab are contaminated, and you have to get past the lab's security system in order to destroy the virus. (There is time pressure, as eventually the virus will escape the lab and kill us all!)

The lab is built as a 4x4 grid, containing a total of 16 rooms, with an entrance at the northwest corner and an exit at the southeast corner. Each room is connected to the adjacent rooms by an airlock. Only the entrance and exit rooms are connected to the outside. The virus has been released in every room except the entrance room.

To destroy the virus samples, you must enter each room and pull its self-destruct switch, destroying the room and the virus within it. But there's a problem—because the lab is in lockdown mode, once you enter a contaminated room, you can't exit without activating the self-destruct switch. Furthermore, once the self-destruct switch has been activated, you cannot re-enter a contaminated room.

Your job is to enter through the entrance room, exit through the exit room, and destroy the virus in every contaminated room. How can you do it?

From the video (at the 1:41 mark), here are the official rules and restrictions:

1. You must enter the building through the entrance and leave through the exit.

2. Every room except the entrance is contaminated.

3. Once you enter a contaminated room, you must pull the switch.

4. After pulling the switch, you must immediately leave the room.

5. You cannot return to a room after its switch has been activated.

Watch the video below for a visual explanation of the problem. This one's a bit of a forehead-smacker when you see the solution.

For more on this puzzle (and its solution), check out this TED-Ed page.

Note: If you're interested in math (without puzzle spoilers), this problem is related to Hamiltonian Paths, or paths that visit each point exactly once.

arrow
fun
Can You Figure Out How Many Triangles Are in This Picture?

Time for another brain teaser. How many triangles do you see here? A Quora user posted the image above (which we spotted on MSN) for fellow brainiacs to chew on. See if you can figure it out. We’ll wait.

Ready?

So, as you can see, all the smaller triangles can combine to become bigger triangles, which is where the trick lies. If you count up every different triangle formed by the lines, you should get 24. (Don’t forget the big triangle!)

Some pedantic Quora users thought it through and realized there are even more triangles, if you really want to go there. There’s a triangle formed by the “A” in the signature in the right-hand corner, and if we’re counting the concept of triangles, the word “triangle” counts, too.

As math expert Martin Silvertant writes on Quora, “A triangle is a mathematical idea rather than something real; physical triangles are by definition not geometrically perfect, but approximations of triangles. In other words, both the pictorial triangles and the words referring to triangles are referents to the concept of a triangle.” So yes, you could technically count the word “triangle.”  (Silvertant also includes a useful graphic explaining how to find all the pictorial triangles.)

Check out the whole Quora discussion for in-depth explainers from users about their methods of figuring it out.

[h/t MSN]

Original image
iStock
arrow
video
This Puzzling Math Brain Teaser Has a Simple Solution
Original image
iStock

Fans of number-based brainteasers might find themselves pleasantly stumped by the following question, posed by TED-Ed’s Alex Gendler: Which sequence of integers comes next?

1, 11, 21, 1211, 111221, ?

Mathematicians may recognize this pattern as a specific type of number sequence—called a “look-and-say sequence"—that yields a distinct pattern. As for those who aren't number enthusiasts, they should try reading the numbers they see aloud (so that 1 becomes "one one," 11 is "two ones," 21 is "one two, one one,” and so on) to figure the answer.

Still can’t crack the code? Learn the surprisingly simple secret to solving the sequence by watching the video below.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios