Scientists Reverse Paralysis in Mice After a Single Treatment


Multiple sclerosis (MS) is an autoimmune disease that occurs when the body responds to its central nervous system and mounts an immune attack, using T cells against its myelin—the protective coating around nerve cells—and the oligodendrocytes that produce myelin. This leads to scar tissue, degradation of nerve fiber, and eventual loss of motor function. Thus far, MS has typically been treated systemically with drugs that suppress the entire immune system, which causes a host of side effects, including susceptibility to infection, hair loss, bladder infections, and nausea, among others.

Now, a team of researchers from the University of Maryland (UoM), has formulated a new therapeutic approach in mice that focuses on a specific immune target—the lymph nodes—without causing systemic immune suppression. Using this technique, they reversed MS-like paralysis in mice. Lead researcher Christopher Jewell, assistant professor of bioengineering at UoM, presented their findings yesterday at the 253rd National Meeting and Exposition of the American Chemical Society. These new results are a continuation of research the team published in the September 2016 issue of the journal Cell Reports.

Jewell tells mental_floss that you can think of the lymph nodes as the place where immune cells are assigned their jobs. The lymph nodes program these cells to differentiate—that is, they tell the cells whether or not they will become inflammatory cells that cause disease, or regulatory cells that control disease. To limit the immune suppressing effects of a systemic injection, Jewell’s team tested a local effect by injecting custom-designed particles made of biodegradable polymer and loaded with immune signaling molecules directly into the lymph nodes of mice.

“We make these polymer particles too big to drain out of the lymph nodes,” Jewell says. The particles slowly degrade and release these immune signaling molecules “that program the immune cell there to have the function that we want—in this case, immunological tolerance.”

The polymers are loaded with two well-studied molecules in the field of MS treatment: peptides derived from myelin cells, and an immunosuppressive drug called rapamyacin. When the T cells in the lymph nodes encounter the molecules embedded in the polymer, “they go to the brain and calm down the cells there that are causing an attack.” Jewell says. This is "a very selective way to block incorrect immune function.”


To test these effects, they used a well-established model to induce the disease symptoms of MS in mice: They injected myelin and an inflammatory molecule into healthy mice to activate the T cells to attack myelin. About 10 to 12 days later, the mice start to lose motor function in their tails and hind limbs. "Eventually they become quadriplegic,” Jewell says.

Once the mice were effectively paralyzed, the researchers made a one-time injection of the myelin/rapamyacin polymer bundle into the mice's lymph nodes, then monitored the animals every day after. “They gradually regain function over about a week or two,” says Jewell. First they began to walk, then could stand on their hind limbs, and eventually they regained full function of all limbs. Some mice didn't regain full function of their tails, but the results nevertheless indicate the treatment had “a massive therapeutic effect,” Jewell says.

The reversal of paralysis lasted as long as the duration of the experiments, which was up to 90 days in some groups of mice, and he has confidence it may be a permanent effect.


In addition to this research, Jewell presented new results from ongoing experiments in which they are studying whether the MS-induced mice that recovered from paralysis were immunocompromised—meaning that their immune systems could no longer fight foreign invaders. Once the mice's recovery from paralysis seemed stable, the researchers immunized the mice with a foreign peptide, ovalbumin, commonly used as a model antigen because it’s easy to track the T cell response for ovalbumin. Each week they monitored the generation of ovalbumin-specific T cells by drawing blood samples. “We’ve shown they can mount specific responses to these antigens, which shows the mice are not immunocompromised,” Jewell says.

This was one of the key goals of doing the local lymph node injections, since current treatments for MS all suppress the entire immune system. To test this result further, they will soon conduct studies in which mice that recover from paralysis are challenged with common pathogens that healthy mice can overcome. “Hopefully we’ll see that these mice can also overcome that, confirming in a more functional way that they are not immunocompromised,” Jewell says.


Even more exciting to Jewell is that they're using this same localized approach to investigate its potential for other autoimmune diseases. In one study currently underway, they have loaded the polymers with pancreatic islet cells and rapamyacin to test the therapy in diabetic mice. “We’re getting good results," he says. "If mice are diabetic and we treat them, they are able to maintain their blood glucose and survive longer than the mice we didn’t treat.”

All of this research adds up to promising potential therapeutics, for MS and other autoimmune diseases, that don’t suppress the immune system. In fact, this approach is being called an “inverse vaccination”—a term coined by Stanford neurologist Larry Steinman. “It’s a vaccination that’s trying to turn off the immune system,” Jewell explains. “We’d like to turn off the part of the immune system that’s functioning against MS, but not the flu, for example.”

They’ll begin non-human primate studies later this year. Before they can move to human clinical trials, Jewell says they need to prove that the no-longer-paralyzed mice aren’t immunocompromised, as well as to test their hypothesis that the reason the mice start walking again is that remyelination is occurring—in essence, that the central nervous system is regrowing the damaged myelin.

Ultimately, he feels that their research adds to a growing field of study that benefits from such a multidisciplinary approach. “You have to have the confidence that some strategy will be better for autoimmune disease,” he says.

Live Smarter
Feeling Anxious? Just a Few Minutes of Meditation Might Help

Some say mindfulness meditation can cure anything. It might make you more compassionate. It can fix your procrastination habit. It could ward off germs and improve health. And it may boost your mental health and reduce stress, anxiety, depression, and pain.

New research suggests that for people with anxiety, mindfulness meditation programs could be beneficial after just one session. According to Michigan Technological University physiologist John Durocher, who presented his work during the annual Experimental Biology meeting in San Diego, California on April 23, meditation may be able to reduce the toll anxiety takes on the heart in just one session.

As part of the study, Durocher and his colleagues asked 14 adults with mild to moderate anxiety to participate in an hour-long guided meditation session that encouraged them to focus on their breathing and awareness of their thoughts.

The week before the meditation session, the researchers had measured the participants' cardiovascular health (through data like heart rate and the blood pressure in the aorta). They evaluated those same markers immediately after the session ended, and again an hour later. They also asked the participants how anxious they felt afterward.

Other studies have looked at the benefits of mindfulness after extended periods, but this one suggests that the effects are immediate. The participants showed significant reduction in anxiety after the single session, an effect that lasted up to a week afterward. The session also reduced stress on their arteries. Mindfulness meditation "could help to reduce stress on organs like the brain and kidneys and help prevent conditions such as high blood pressure," Durocher said in a press statement, helping protect the heart against the negative effects of chronic anxiety.

But other researchers have had a more cautious outlook on mindfulness research in general, and especially on studies as small as this one. In a 2017 article in the journal Perspectives on Psychological Science, a group of 15 different experts warned that mindfulness studies aren't always trustworthy. "Misinformation and poor methodology associated with past studies of mindfulness may lead public consumers to be harmed, misled, and disappointed," they wrote.

But one of the reasons that mindfulness can be so easy to hype is that it is such a low-investment, low-risk treatment. Much like dentists still recommend flossing even though there are few studies demonstrating its effectiveness against gum disease, it’s easy to tell people to meditate. It might work, but if it doesn't, it probably won't hurt you. (It should be said that in rare cases, some people do report having very negative experiences with meditation.) Even if studies have yet to show that it can definitively cure whatever ails you, sitting down and clearing your head for a few minutes probably won't hurt.

Can You 'Hear' These Silent GIFs?

GIFs are silent—otherwise they wouldn't be GIFs. But some people claim to hear distinct noises accompanying certain clips. Check out the GIF below as an example: Do you hear a boom every time the structure hits the ground? If so, you may belong to the 20 to 30 percent of people who experience "visual-evoked auditory response," also known as vEAR.

Researchers from City University London recently published a paper online on the phenomenon in the journal Cortex, the British Psychological Society's Research Digest reports. For their study, they recruited more than 4000 volunteers and 126 paid participants and showed them 24 five-second video clips. Each clip lacked audio, but when asked how they rated the auditory sensation for each video on a scale of 0 to 5, 20 percent of the paid participants rated at least half the videos a 3 or more. The percentage was even higher for the volunteer group.

You can try out the researchers' survey yourself. It takes about 10 minutes.

The likelihood of visual-evoked auditory response, according to the researchers, directly relates to what the subject is looking at. "Some people hear what they see: Car indicator lights, flashing neon shop signs, and people's movements as they walk may all trigger an auditory sensation," they write in the study.

Images packed with meaning, like two cars colliding, are more likely to trigger the auditory illusion. But even more abstract images can produce the effect if they have high levels of something called "motion energy." Motion energy is what you see in the video above when the structure bounces and the camera shakes. It's why a video of a race car driving straight down a road might have less of an auditory impact than a clip of a flickering abstract pattern.

The researchers categorize vEAR as a type of synesthesia, a brain condition in which people's senses are combined. Those with synesthesia might "see" patterns when music plays or "taste" certain colors. Most synesthesia is rare, affecting just 4 percent of the population, but this new study suggests that "hearing motion synesthesia" is much more prevalent.

[h/t BPS Research Digest]


More from mental floss studios