CLOSE
Original image
iStock

Why Can't We See Stars During the Day?

Original image
iStock

What causes our inability to see stars during the day? I always thought sunlight would bounce off the particles in the air, thus illuminating them. And the stars would no longer stand out. However people argue that the reason there are no stars in moon landing pictures is because the pictures are taken in lunar days. But the moon has no atmosphere. So I'm wrong.

Rebecca Pitts:

Your thinking is not wrong, merely incomplete. Rather, you’re applying the same principles to two different situations: Sunlight can scatter off of any substance between a light source and a detector—including all parts of your eyeball in front of your retinas—but in the absence of that, it’d still be hard to see the stars. The Sun, and bodies that reflect its light, are just too darn bright compared to their surroundings.

To quantify just how much brighter the Sun and the daytime sky are than the stars, let me start by introducing the wonky way astronomers gauge how bright things are relative to each other or to a standard star. It’s called the Magnitude system, and barely makes sense today because it’s a 2000-year-old hand-me-down from Hipparchus/Ptolemy (it’s so old we can’t even agree on who’s responsible). The relevant details are summed up in the following images:

(By the way, that infographic is overly optimistic in one regard: the naked-eye limit in most cities is more like 3rd magnitude.)

To put the Sun and Moon on that scale and show you just how far the magnitude system can go into the negatives, look at this:

How the Size of a Star Relates to Brightness

The daytime sky is bright enough that it outshines anything fainter than magnitude -4. So, yes, on Earth, the atmosphere is in fact the problem, because of Rayleigh Scattering.

Now what about situations where the atmosphere isn’t a factor?

Combining information from the two figures, the full moon is at least 25,000 times brighter than Sirius. The sun is 400,000 times brighter than that—10,000,000,000 times brighter than the brightest star in the night sky. The brightness of a candle, not coincidentally, is about 1 candela (SI unit of brightness). What’s something 10,000,000,000 times brighter than a candle? Try something like the Luxor Sky Beam in Las Vegas, which shines at 42.3 billion candela. Seeing a star with the sun in your field of view will never be less hard than spotting a handful of candles while staring down the beam of the most powerful spotlight on Earth.

The ratio of signal intensity (brightness in the case of light) between the faintest detectable signal and the point where your instrument maxes out (saturation) is called dynamic range, essentially the maximum contrast ratio. So to photograph the sun and have another star show up in the same image, your detector needs a dynamic range of 10 billion. The dynamic ranges of existing technologies are as follows:

  • Charge Coupled Devices (CCDs, the detectors for digital cameras): 70,000–500,000 depending on the grade (16-bit Analogue-to-Digital converter software that typically accompanies consumer- and education-grade CCDs will cut this to about 50,000)
  • Charge-Injection Devices (the fancier cousin of the CCD where pixels are handled individually rather than by rows and columns): 20 million, as this PDF demonstrates.
  • Human Eye: widely variable, but tops out around 15,000
  • Photographic Film: a few hundred. Yep—that’s it.

To add insult to injury, film doesn’t even react to 98 to 99 percent of the light that hits it. Your eye is every bit as inefficient, but at least it has a dynamic range closer to that of a CCD than to film. CCDs will register upwards of 90 percent of the incident light. You can read about other advantages of CCDs here (their stat on the dynamic range of film is a tad low). But back in the 1960s, CCDs didn’t exist. NASA had to make do with film. (Here’s a whole article on NASA’s film supplies and their specs during the Apollo Program.)

At the Earth’s (and moon’s) distance from the sun, the average square meter of surface receives about 342 watts per square meter (W/m^2) of power from the sun (see Solar Radiation at Earth). If the sun is directly overhead, that number is closer to 1368 W/m^2, but let’s stick with 342 W/m^2 because that’s the average over the sun-facing hemisphere and most of the surface is at some angle to the sun. The Moon reflects about 12 percent of the light that hits it. That doesn’t seem like a lot, but for the Apollo astronauts, that’s like standing on a surface where every square meter is, on average, as bright as a typical desk lamp. The astronauts’ white suits and the highly reflective landing modules were even brighter. As far as the film was concerned, the Apollo astronauts were flood lights standing in a lamp shop. That kind of light pollution doesn’t make for good astrophotography.

Regardless of the technology used, the correct exposure time is important to get a good picture of what you want and as little as possible of what you don’t want. The background stars were not important to the Apollo crews’ studies of the Moon, so their exposure times were calculated to get the best images of Moon rocks, astronauts, landing sites, etc. The upshot is that exposure times for most Apollo photographs were so short that the photo emulsion never received enough light from the background stars to react.

However, there are images taken by the Apollo crews with stars in them. But stars were never their targets, so they don’t look very good, as these UV images from Apollo 16 show:

NASA (*Note - false color UV photo of Earth’s Geocorona in 3 filters, rather poorly aligned judging by the stars)

This post originally appeared on Quora. Click here to view.

Original image
iStock
arrow
Big Questions
Why Do Cats Freak Out After Pooping?
Original image
iStock

Cats often exhibit some very peculiar behavior, from getting into deadly combat situations with their own tail to pouncing on unsuspecting humans. Among their most curious habits: running from their litter box like a greyhound after moving their bowels. Are they running from their own fecal matter? Has waste elimination prompted a sense of euphoria?

Experts—if anyone is said to qualify as an expert in post-poop moods—aren’t exactly sure, but they’ve presented a number of entertaining theories. From a biological standpoint, some animal behaviorists suspect that a cat bolting after a deposit might stem from fears that a predator could track them based on the smell of their waste. But researchers are quick to note that they haven’t observed cats run from their BMs in the wild.

Biology also has a little bit to do with another theory, which postulates that cats used to getting their rear ends licked by their mother after defecating as kittens are showing off their independence by sprinting away, their butts having taken on self-cleaning properties in adulthood.

Not convinced? You might find another idea more plausible: Both humans and cats have a vagus nerve running from their brain stem. In both species, the nerve can be stimulated by defecation, leading to a pleasurable sensation and what some have labeled “poo-phoria,” or post-poop elation. In running, the cat may simply be working off excess energy brought on by stimulation of the nerve.

Less interesting is the notion that notoriously hygienic cats may simply want to shake off excess litter or fecal matter by running a 100-meter dash, or that a digestive problem has led to some discomfort they’re attempting to flee from. The fact is, so little research has been done in the field of pooping cat mania that there’s no universally accepted answer. Like so much of what makes cats tick, a definitive motivation will have to remain a mystery.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

Original image
Jonathan Daniel/Getty Images
arrow
Big Questions
Why Do Baseball Managers Wear Uniforms?
Original image
Jonathan Daniel/Getty Images

Basketball and hockey coaches wear business suits on the sidelines. Football coaches wear team-branded shirts and jackets and often ill-fitting pleated khakis. Why are baseball managers the only guys who wear the same outfit as their players?

According to John Thorn, the official historian of Major League Baseball since 2011, it goes back to the earliest days of the game. Back then, the person known as the manager was the business manager: the guy who kept the books in order and the road trips on schedule. Meanwhile, the guy we call the manager today, the one who arranges the roster and decides when to pull a pitcher, was known as the captain. In addition to managing the team on the field, he was usually also on the team as a player. For many years, the “manager” wore a player’s uniform simply because he was a player. There were also a few captains who didn’t play for the team and stuck to making decisions in the dugout, and they usually wore suits.

With the passing of time, it became less common for the captain to play, and on most teams they took on strictly managerial roles. Instead of suits proliferating throughout America’s dugouts, though, non-playing captains largely hung on to the tradition of wearing a player's uniform. By the early to mid 20th century, wearing the uniform was the norm for managers, with a few notable exceptions. The Philadelphia Athletics’s Connie Mack and the Brooklyn Dodgers’s Burt Shotton continued to wear suits and ties to games long after it fell out of favor (though Shotton sometimes liked to layer a team jacket on top of his street clothes). Once those two retired, it’s been uniforms as far as the eye can see.

The adherence to the uniform among managers in the second half of the 20th century leads some people to think that MLB mandates it, but a look through the official major league rules [PDF] doesn’t turn up much on a manager’s dress. Rule 1.11(a) (1) says that “All players on a team shall wear uniforms identical in color, trim and style, and all players’ uniforms shall include minimal six-inch numbers on their backs" and rule 2.00 states that a coach is a "team member in uniform appointed by the manager to perform such duties as the manager may designate, such as but not limited to acting as base coach."

While Rule 2.00 gives a rundown of the manager’s role and some rules that apply to them, it doesn’t specify that they’re uniformed. Further down, Rule 3.15 says that "No person shall be allowed on the playing field during a game except players and coaches in uniform, managers, news photographers authorized by the home team, umpires, officers of the law in uniform and watchmen or other employees of the home club." Again, nothing about the managers being uniformed.

All that said, Rule 2.00 defines the bench or dugout as “the seating facilities reserved for players, substitutes and other team members in uniform when they are not actively engaged on the playing field," and makes no exceptions for managers or anyone else. While the managers’ duds are never addressed anywhere else, this definition does seem to necessitate, in a roundabout way, that managers wear a uniform—at least if they want to have access to the dugout. And, really, where else would they sit?

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios