CLOSE
Original image
iStock

An Epilepsy Drug May Have Treatment Potential for Migraines

Original image
iStock

The migraine—a common but debilitating brain disorder characterized by severe headaches, often with accompanying nausea and visual auras—has perplexed neurologists for decades. There are so many types of migraine, and each person’s physiology responds differently to the few drugs and treatments available.

In the hunt for an umbrella drug to treat all migraines, researchers at the University of British Colombia have investigated a potential new treatment for migraine with aura, which affects about one-third of migraine sufferers: pregabalin (brand name Lyrica). In a class of drugs called gabapentinoids, pregabalin is an anticonvulsant used to treat epilepsy, neuropathic pain, and fibromyalgia. The researchers published their results today in Proceedings of the National Academy of Sciences (PNAS).

Migraines begin in the brain before they’re ever visualized as an aura or felt as an intense headache. Researchers believe migraines are triggered by a brain pattern known as cortical spreading depression, or SD. Though triggers can be numerous, the SD starts in the brain as a “depolarization of neurons in a particular area of the brain,” Stuart Cain, lead author and a neurophysiologist at University of British Columbia, Vancouver tells mental_floss. “This causes a wave of excitation that travels across the brain.”

After the excitation period, there’s a long period of inactivity in which the neurons become stuck in this inactive state. “It’s this wave of inactivity that is actually causing spreading depression, and that causes the migraine aura,” he explains. Though the mechanisms are still not fully understood, they also believe this SD triggers the trigeminal nerve, one of the most widely distributed nerves in the head. That is what causes the headache pain.

As the SD travels slowly through the brain, it may go into the visual cortex and stimulate visual hallucinations, or even the auditory cortex, causing auditory hallucinations. In regular mice, the SD is constrained to the cortex, known as cortical spreading depression, which is typical migraine without aura. But in the mutant mice they used for the study, genetically modified to exhibit high susceptibility to the familial hemiplegic migraine (FHM) gene, FHM-1, which are associated with migraines accompanied by a visual aura, the SD enters the subcortical structures of the hippocampus, causing this type of migraine.

Migraines, strokes, and epilepsy are all known as calcium channel disorders; among other things, calcium channels play a role in cell depolarization and excitability. The FHM-1 patients have mutations in the P2 voltage-gated calcium channel. Pregabalin has been shown in previous studies to bind to the alpha-2 delta subunit of voltage-gated calcium channels, modulating the amount of calcium coming into the cell through this channel. When pregabalin inhibits the calcium, it also suppresses SD, which can stop migraines from starting.

To test the effects of pregabalin on the mutant mice, the researchers anesthetized the mice and induced migraine through implanted carbon fiber electrodes in the occipital cortex. Then, they injected them with a dose of pregabalin mixed with saline. (Humans would take an oral dose.)

“Mice have very fast metabolism, so you can’t wait too long,” Cain says. So 45 minutes later, they took eight consecutive image slices using a special form of MRI known as “diffusion weighted” MRI or “DW-MRI” over 13 minutes to track the SD in the mouse brains. “When SD occurs, the brain cells swell, and this changes the brightness of intensity on the MRI image. So we can view it as a movie traveling through the brain,” Cain says.

As they theorized, the pregabalin did indeed have an effect on SD. It slowed the speed and intensity of the SD waves. It also helped clear up a question neurologists have had about whether SD ever goes into the cerebellum, a structure in the very back of the brain that controls movement. “We were excited to see if the SD went into that structure in mutant mice, but it never did, so that was quite a big finding for the field," he says. "We now know that ataxia [a loss of voluntary muscle control] has nothing to do with SD.”

While they can’t recreate this same study design in human trials, since that would require inserting electrodes into the brain, they do have plans to combine MRI diagnostics with administration of pregabalin to attempt to improve outcomes for migraine patients. Cain is optimistic about the drug’s possibilities. “What the study shows is that more clinical trials are definitely warranted so we can properly validate its use for migraines,” he says.

For migraine patients, any new treatment in the already limited arsenal may bring hope.

Original image
iStock
arrow
Medicine
The World's First VR Brain Surgery Is Here
Original image
iStock

A lot of consumers are focused on virtual reality as a means of immersing themselves in games or traveling to exotic locales, but the technology holds some incredible potential as a learning tool. One recent—and graphic—example is VR brain surgery, which allows viewers to examine the amygdala like they never thought possible.

In the experience, which was produced and overseen by Fundamental VR at the Royal London Hospital, users will be able to follow along with surgeons as a patient is wheeled into the operating room and undergoes a real neurosurgical procedure to repair two aneurysms (balloon-like bulges in an artery that can rupture). Cameras installed in the OR and GoPro units on the surgeons provide a first person-perspective; you can also switch to the POV of the patient as instruments enter and exit your field of view.

The idea was embraced by surgeons at Royal London, who see it as having the potential to be a valuable training tool for neurosurgeons by mimicking "hands on" experience. Although the footage is best seen using a VR headset, you can get a feel for the experience in the YouTube footage below. Did we mention it's very, very graphic?

More sophisticated versions of the program—including tactile feedback for users—are expected to be implemented in Fundamental VR's surgical training programs in the future. Currently, programs like Surgical Navigation Advanced Platform (SNAP) are being used at major institutions like Stanford University and University of California, Los Angeles to map the brain prior to incision.

If this whets your appetite for witnessing brain operation footage, don't forget we filmed and broadcast a live brain surgery in partnership with National Geographic. You can still check it out here.

[h/t Wired]

Original image
iStock
arrow
Health
How Dangerous Is a Concussion?
Original image
iStock

It's not football season, but the game is still making headlines: In a new study published in the Journal of the American Medical Association, neuropathologist Ann McKee and her colleagues examined the brains of 111 N.F.L. players and found 110 of them to have the degenerative disease chronic traumatic encephalopathy (CTE).

The condition has been linked to repeated blows to the head—and every year in the U.S., professional and novice athletes alike receive between 2.5 and 4 million concussions. This raises the question: What happens to the human brain when we get a concussion or suffer a hard blow to the head, and how dangerous are these hits to our long-term health?

Expert Clifford Robbins explains in the TED-Ed video below:

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios