CLOSE
Original image
NASA/Getty

NASA Announces Winners of the 'Space Poop Challenge'

Original image
NASA/Getty

Last year, NASA asked the public for help solving a problem facing its astronauts: how to collect and store poop in space. Now NPR reports that the five winners of the "Space Poop Challenge" have been announced, and their ideas are out of this world.

Astronauts currently rely on adult diapers when they need to do their business inside their space suits. As NASA wrote back in October: "After all: when you gotta go, you gotta go. And sometimes you gotta go in a total vacuum."

Looking for a more high-tech way to deal with these sticky circumstances, the space agency called on members of the public to submit designs for a system capable of collecting urine, feces, and menstrual fluid and routing it away from the body for 144 hours straight.

Close to 20,000 contestants submitted over 5000 ideas through the crowdsourcing site HeroX, and on Wednesday, February 15 five winners were revealed. Flight surgeon and family practice physician Thatcher Cardon was awarded the $15,000 grand prize for his ingenious waste-disposing suit hatch. Inspired by completing complex procedures in tight places as a surgeon, he designed a small airlock in the crotch for passing underwear, inflatable bedpans, and diapers in and out of the space suit.

The second-place team is made up of a physician, a dentist, and an engineering professor who all live in Houston, Texas and studied chemical engineering in college. Their "Air-PUSH Urinary Girdle" uses air to guide waste away from the body and stores it in a different part of the suit. The group, competing under the name Space Poop Unification of Doctors (or SPUDs), won $10,000 for the idea.

The third-place $5000 prize went to UK-based product designer Hugo Shelley for his "Zero Gravity Underwear." According to NPR, he says that the skin-tight undergarment "features a new catheter designed for extended use in microgravity, combined with a mechanism that compresses, seals, and sanitizes solid waste."

In perfect scenarios, astronauts would never spend anywhere near 144 hours in their suits and wouldn't need to worry about the question of long-term waste collection. The designs are more for disaster situations when crew members might find themselves stuck in their space suits for up to six days at a time. After building prototypes of the winning ideas, NASA next hopes to test the systems on the International Space Station.

[h/t NPR]

Original image
NASA/Getty Images
arrow
Space
Here's Where You Can Watch a Livestream of Cassini's Final Moments
Original image
NASA/Getty Images

It's been a road trip like no other. After seven years and 2.2 billion miles, the NASA orbiter Cassini finally arrived at the Saturn system on June 30, 2004. Ever since, it's been capturing and transmitting valuable data about the distant environment. From sending the Huygens probe to land on the moon Titan to witnessing hurricanes on both of the planet's poles, Cassini has informed more than 3000 scientific papers.

It's been as impressive a mission as any spacecraft has ever undertaken. And tomorrow, Cassini will perform one last feat: sacrificing itself to Saturn's intense atmosphere. Project scientists are deliberately plunging it into the planet in order to secure just a little more data—and to keep the spacecraft, which is running low on fuel, from one day colliding with a Saturnian moon that might harbor life.

Because it won't have time to store anything on its hard drive, Cassini will livestream its blaze of glory via NASA. The information will be composed mostly of measurements, since pictures would take too long to send. Instead, we'll get data about Saturn's magnetic field and the composition of its dust and gas.

"As we fly through the atmosphere, we are able to literally scoop up some molecules, and from those we can figure out the ground truth in Saturn’s atmosphere," Scott Edgington, a Cassini project scientist, told New Scientist. "Just like almost everything else in this mission, I expect to be completely surprised."

The action will kick off at 7 a.m. EDT on Friday, September 15. Scientists expect to say goodbye to Cassini less than an hour later. 

While you wait for Cassini's grand finale, you can check out some essential facts we've rounded up from Saturn experts. And keep your eyes peeled for a full recap of Cassini’s historic journey: Mental Floss will be in the control room at the Jet Propulsion Laboratory in Pasadena, California, to offer a firsthand account of the craft's final moments in space. 

Original image
NASA/JPL-Caltech/Space Science Institute/G. Ugarkovic
arrow
Space
9 Essential Facts About Saturn
Original image
This portrait looking down on Saturn and its rings was created from images obtained by NASA's Cassini spacecraft on October 10, 2013.
NASA/JPL-Caltech/Space Science Institute/G. Ugarkovic

Saturn is the planet you always drew in elementary school because without those rings, it's just a circle. But what is Saturn, anyway, and what makes it special to planetary scientists? Now is a good time to find out: On September 15, the scientists who operate the Cassini spacecraft—which they've used to study the gas giant for 13 years—are going to intentionally destroy Cassini by sending it on a crash course with Saturn. The data it will send back before it meets its fiery demise will be priceless.

Mental Floss is going to be inside mission control at NASA's Jet Propulsion Laboratory in Pasadena, California, as the scientists send Cassini on its grand finale mission. We'll have a full dispatch for you. In anticipation, we spoke to Saturn experts to find out what you need to know about the planet before Cassini takes its final plunge.

1. SATURN BY THE NUMBERS.

At 75,000 miles across, Saturn is nearly 10 times larger than Earth and the second-largest planet in the solar system, behind its neighbor, Jupiter. It is called a gas giant, meaning it is really big and made mostly of gas: in this case, hydrogen and helium. The deeper you get into Saturn, the greater the pressure and heat. How bad could it be, you ask? Bad enough that hydrogen exists as a liquid metal near the planet's core. In other words, don't expect astronauts to plant flags down there anytime soon. One Saturn year lasts about 30 Earth years, and one Saturn day is, well …

2. THE LENGTH OF A SATURNIAN DAY IS A MYSTERY.

The spacecraft Cassini has been operating in the Saturnian system for 13 years doing extraordinary science—and yet the length of a day on Saturn remains elusive. Is it 10 hours and 39 minutes, as suggested by data from Voyager 2 in 1981? Or is it 10 hours and 47 minutes, as Cassini data suggested when the spacecraft first arrived at Saturn in 2004? Or is it 10 hours 33 minutes, as later data suggested?

The problem is that Saturn keeps giving new answers. There are no continents spinning around for scientists to set a stopwatch to; cloud orbits are unreliable; and measurements of the planet's radio radiation and magnetic fields have proven equally frustrating. As Cassini completes its final orbits, it is collecting up-close Saturn data that might finally answer the question. No matter the number to be determined, 10 hours and change is a tremendous speed for a planet of Saturn's size to be spinning, and it affects even the planet's shape; its poles are flattened as a result of its rotation.

3. SATURN HAS SEASONS.

Visiting space aliens would never confuse Saturn with Earth, though the two planets do have one interesting shared characteristic: both are tilted to similar degrees relative to the equator of the Sun. Earth is tilted at 23.5 degrees; Saturn is tilted at 26.7 degrees. Axial tilt is the reason we experience seasons, and Saturn is no different (though the leaves there don't change color due to a pronounced lack of trees). Saturn experienced summer solstice four months ago, marking its maximum axial tilt toward the Sun and making it midsummer in Saturn's northern hemisphere. It will reach Autumn equinox in May 2025.

4. HERE'S MORE ABOUT CASSINI, NASA'S MOST AMBITIOUS PLANETARY MISSION EVER.

After 20 years in space—seven years en route to Saturn and 13 years in orbit around it—the Cassini spacecraft is nearly out of fuel for its thrusters. Rather than enter a permanent orbit around Saturn as an artificial satellite, or sent on an intercept course with Uranus, both risky endeavors, Cassini will burn up like a shooting star when it plunges into the depths of Saturn on September 15. For the past six months, Cassini has been taking daring dives through Saturn's rings in a series of 22 orbits, the last of which will send it on an impact course with the planet. As it speeds into the gas giant, it will return data on the composition of Saturn's atmosphere. Cassini's death mission will protect the moons Enceladus and Titan from contamination by Earth germs. 

5. ENJOY TERRIBLE WEATHER? YOU'D LOVE LIFE ON SATURN.

"Saturn has these absolutely massive storms once every few decades," says Sarah Hörst, a planetary scientist at Johns Hopkins University, "and we actually got to see one of them happen because we've been there so long." Scientists already knew about the storms from Earth-based observation, but close-up study made possible by Cassini gave new insights on how they work and what they do. "These massive storms actually pull up a lot of material from deeper in the atmosphere—stuff that we can't usually see or measure," she tells Mental Floss. This material consists of gases from deep within the planet's atmosphere. Saturn's storms cause dramatic temperature changes, and even have lightning. "If you were somehow managing to stand inside of Saturn's atmosphere, some of the storms would feel quite familiar, and some of these longer-lived storms, these vortexes, are somewhat related to a hurricane."

6. IT HAS A CORE, BUT DETAILS ABOUT IT ARE HAZY.

Saturn has a rocky core surrounded by liquid metallic hydrogen, though the finer details of the planet's interior remain elusive. At Jupiter, NASA's Juno mission is hard at work determining the nature of that planet's core. The 22 proximal orbits of Cassini's "grand finale" have a configuration similar to those of Juno, and scientists hope that data from these orbits can be used with Juno data to learn more about Saturn's interior. "The general picture that there's rocky stuff down there, probably metallic hydrogen, isn't really going to change," says Hörst. "The details of exactly how it looks and where its phase changes are—those types of things—will hopefully be worked out a bit more before Cassini ends."

7. YOU CAN SEE SATURN FROM YOUR BACKYARD.

When the skies are conducive to viewing, even a modest telescope can allow you to see Saturn. It will look just like you imagine: a ball surrounded by a distinctive ring structure. It will even "feel" three dimensional (because it is, of course) in a way that Jupiter or Mars will not. Your telescope might even allow you to spot Titan, Saturn's largest moon. Sky & Telescope offers a guide to help you see Saturn in all its glory.

8. ITS MOONS MIGHT BE YOUNGER THAN SOME DINOSAUR FOSSILS.

Earth's moon is about 4.5 billion years old. Saturn's moons are mere infants in comparison: possibly as young as 100 million years old. Matija Cuk, a research scientist at SETI, modeled the orbital evolution of the Saturn system, and found that the orbital shifts of the moons over time, and the gravitational influences of the moons over each other, suggest origins when dinosaurs ruled the Earth. "If calculations predict that something happened in the past and you don't see it, maybe it never happened," he tells Mental Floss. One scenario sees a different inner moon system whose orbits resonated and eventually crossed, causing the moons to collide. The current system of moons then assembled from the debris.

Those rings around Saturn might not be very old, either, and might be related to the young moons. "The rings might be pieces of broken up moons," he says. "You figure out how old the rings are and you can figure out the last time the moons were broken up and when some of them were put back together."

9. THERE'S A GOOD CHANCE THAT LIFE EXISTS ON THOSE MOONS.

Enceladus, one of Saturn's moons, possesses a global saltwater ocean surrounded by an icy crust. That ocean is in direct contact with a rocky core. Saltwater touching rock is exciting because it allows for interesting chemistry—including the sort that might be conducive to life. Adding to the excitement are hydrothermal vents on the sea floor, spewing water, minerals, and nutrients heated by geothermal activity. Better yet, that ocean is being blasted into space through massive geysers. This means NASA can get to the water, sample it, and hopefully, find life.

Titan, another moon of Saturn, also possesses the right stuff for life—and not boring old liquid water life, either, but something wholly alien: a methane-based life form. Key to such life would be the presence of the molecule acrylonitrile, now known to exist on Titan. The European Space Agency landed the Huygens probe on Titan in 2005, and Cassini later discovered several massive liquid methane lakes on that world. The next step is to send a submarine there and get to work.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios