CLOSE

Scientists Make Progress Toward a Safe, Effective Zika Vaccine

A biologist releases genetically modified Aedes Egypti mosquitoes in Piracicaba, Brazil, in February 2016. The modified mosquitoes, which cannot transmit Zika, compete with wild mosquitoes. Image Credit: Victor Moriyama/Getty Images

 
Zika virus has spread to almost 60 countries since early 2016. Almost 5000 cases have been identified in the United States, including more than 200 infections transmitted in Florida and Texas. Though the virus often causes only mild symptoms (or may not cause any symptoms at all), the link between Zika infection, microcephaly, and other developmental abnormalities has been strengthened with additional studies over the past year. However, a vaccine is still unavailable.

New research led by investigators at the University of Pennsylvania may move us closer to the goal of a safe, effective vaccine for the virus. The findings were published today in the journal Nature.

The scientists used a novel type of vaccine to immunize mice and monkeys, taking RNA molecules that code for viral proteins (messenger RNA, or mRNA). Because these RNA molecules would usually be quickly cleared by the body, the RNA in the Zika vaccine was modified by the addition of a modified nucleoside. The nucleoside is a nucleotide—the building blocks of DNA—lacking a phosphate group, which previous studies have shown helps to “hide” the mRNA from the host and allow replication. The mRNA was also packaged within lipid nanoparticles, encouraging protein expression. This vaccine therefore allows the mRNA to enter cells and induce production of the viral protein, causing a host immune response similar to that seen with a live virus vaccine. Researchers found that a single dose of the mRNA vaccine effectively protected animals against Zika virus.

Senior author Drew Weissman, of the University of Pennsylvania, relayed the advantages of this approach in a phone call with mental_floss. “The main advantages of our RNA vaccine is that only a single administration is needed. For all of the DNA and inactivated vaccines, they have to immunize twice to get protection, so we get much higher levels of neutralization with a single immunization. The only other vaccine that had protection after a single immunization was the live virus adenovirus vaccine.”

Live vaccines are difficult for a number of reasons, including potential side effects, and cannot be used in pregnant women—a main risk group for Zika infections due to the virus’s effects on the developing fetus. Weissman also noted the mRNA vaccine is inexpensive to produce, which could facilitate widespread use even in resource-limited countries.

Scientists hope to start human clinical trials with the Zika mRNA vaccine in 12 to 18 months. In the interim, additional experiments are planned in order to begin studying whether this Zika vaccine could potentially lead to increased illness with a related flavivirus: dengue. Dengue infection can lead to a phenomenon called “antibody-dependent enhancement,” where antibodies make disease worse instead of protecting the host from infection. There is concern that those vaccinated for Zika could experience more severe dengue infections in areas where both viruses circulate.

To examine whether their Zika vaccine could cause this effect, Weissman says, “We’re taking two approaches. We want to look at antibody-dependent enhancement between different flaviviruses. We’re also working on a combination vaccine that includes all of the flavivirus RNAs together, and the hope there is that with a single vaccine we can immunize against Dengue, West Nile, Zika, Japanese encephalitis, or whatever flaviviruses we want to include.”

Weissman and his collaborators are not the only ones hoping to move a Zika vaccine from the lab to the clinic. A number of different groups have worked to develop a Zika vaccine over the last year. A Phase I clinical trial, to investigate vaccine safety, began last August of a DNA vaccine developed at the National Institutes of Health. And while investigators are hopeful that one of the vaccines in development could be ready for use by 2018, vaccines for pregnant women may be delayed until several years after that, due to the difficulties of demonstrating safety in that population.

The components of the mRNA vaccine also provide hope the vaccine could be used during pregnancy. Weissman explains, “The RNA they use is identical to what’s in our bodies. The nanoparticles also contain mostly physiological lipids. We’ve seen no adverse events from any of our immunizations, so we’re thinking that will probably be easy to give to a pregnant woman.”

nextArticle.image_alt|e
Jamie McCarthy/Getty Images for Bill & Melinda Gates Foundation
arrow
Medicine
Bill Gates is Spending $100 Million to Find a Cure for Alzheimer's
Jamie McCarthy/Getty Images for Bill & Melinda Gates Foundation
Jamie McCarthy/Getty Images for Bill & Melinda Gates Foundation

Not everyone who's blessed with a long life will remember it. Individuals who live into their mid-80s have a nearly 50 percent chance of developing Alzheimer's, and scientists still haven't discovered any groundbreaking treatments for the neurodegenerative disease [PDF]. To pave the way for a cure, Microsoft co-founder and philanthropist Bill Gates has announced that he's donating $100 million to dementia research, according to Newsweek.

On his blog, Gates explained that Alzheimer's disease places a financial burden on both families and healthcare systems alike. "This is something that governments all over the world need to be thinking about," he wrote, "including in low- and middle-income countries where life expectancies are catching up to the global average and the number of people with dementia is on the rise."

Gates's interest in Alzheimer's is both pragmatic and personal. "This is something I know a lot about, because men in my family have suffered from Alzheimer’s," he said. "I know how awful it is to watch people you love struggle as the disease robs them of their mental capacity, and there is nothing you can do about it. It feels a lot like you're experiencing a gradual death of the person that you knew."

Experts still haven't figured out quite what causes Alzheimer's, how it progresses, and why certain people are more prone to it than others. Gates believes that important breakthroughs will occur if scientists can understand the condition's etiology (or cause), create better drugs, develop techniques for early detection and diagnosis, and make it easier for patients to enroll in clinical trials, he said.

Gates plans to donate $50 million to the Dementia Discovery Fund, a venture capital fund that supports Alzheimer's research and treatment developments. The rest will go to research startups, Reuters reports.

[h/t Newsweek]

arrow
science
A New Analysis of Chopin's Heart Reveals the Cause of His Death

For years, experts and music lovers alike have speculated over what caused celebrated composer Frederic Chopin to die at the tragically young age of 39. Following a recent examination of his heart, Polish scientists have concluded that Chopin succumbed to tuberculosis, just as his death certificate states, according to The New York Times.

When Chopin died in 1849, his body was buried in Paris, where he had lived, while his heart was transported to his home city of Warsaw, Poland. Chopin—who appeared to have been ill with tuberculosis (TB)—was terrified of the prospect of being buried alive, and nostalgic for his national roots. He asked for his heart to be cut out, and his sister later smuggled it past foreign guards and into what is now Poland.

Preserved in alcohol—likely cognac—and stored in a crystal jar, Chopin's heart was laid to rest inside Holy Cross Church in Warsaw. (It was removed by the Germans in 1944 during the Warsaw Uprising, and later returned.) But rumors began to swirl, as the same doctor tasked with removing the heart had also conducted an autopsy on the composer's body, according to the BBC.

The physician's original notes have been lost, but it's said he concluded that Chopin had died not from TB but from "a disease not previously encountered." This triggered some scholars to theorize that Chopin had died from cystic fibrosis, or even a form of emphysema, as the sickly musician suffered from chronic respiratory issues. Another suspected condition was mitral stenosis, or a narrowing of the heart valves.

Adhering to the wishes of a living relative, the Polish church and government have refused to let scientists conduct genetic tests on Chopin's heart. But over the years, teams have periodically checked up on the organ to ensure it remains in good condition, including once in 1945.

In 2014, a group of Chopin enthusiasts—including Polish scientists, religious officials, and members of the Chopin Institute, which researches and promotes Chopin's legacy—were given the go-ahead to hold a clandestine evening meeting at Holy Cross Church. There, they removed Chopin's heart from its perch inside a stone pillar to inspect it for the first time in nearly 70 years.

Fearing the jar's alcohol would evaporate, the group added hot wax to its seal and took more than 1000 photos of its contents. Pictures of the surreptitious evening procedure weren't publicly released, but were shown to the AP, which described Chopin's preserved heart as "an enlarged white lump."

It's unclear what prompted a follow-up investigation on Chopin's heart, or who allowed it, but an early version of an article in the American Journal of Medicine states that experts—who did not open the jar—have newly observed that the famed organ is "massively enlarged and floppy," with lesions and a white, frosted appearance. These observations have prompted them to diagnose the musician's cause of death as pericarditis, which is an inflammation of tissue around the heart. This likely stemmed from his tuberculosis, they said.

Some scientists might still clamor at the prospect of testing tissue samples of Chopin's heart. But Michael Witt of the Polish Academy of Sciences—who was involved in this latest examination—told The Guardian that it was unnecessary to disturb what many consider to be a symbol of national pride.

"Some people still want to open it in order to take tissue samples to do DNA tests to support their ideas that Chopin had some kind of genetic condition," Witt said. "That would be absolutely wrong. It could destroy the heart, and in any case, I am quite sure we now know what killed Chopin."

[h/t The New York Times]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios