CLOSE
iStock
iStock

Soft, Implantable Robots May Help Ailing Hearts

iStock
iStock

An estimated 5.7 million Americans suffer from heart failure, or an inability to pump a sufficient amount of blood throughout the body. Many submit to drug therapy, with resulting side effects; a small percentage receive heart transplants, though there aren't nearly enough hearts to cover the demand for a healthier organ.

Now, researchers at Harvard, Cambridge, and other leading universities may have found an alternative solution: an implantable “soft” robot made of elastic material that can fit over the heart like a sleeve and assist it in pumping.   

According to a study published today in Science Translational Medicine [PDF], the robotic sleeve seeks to supplement—not replace—the heart’s natural motions. Silicone materials mimic cardiac tissue and conform to the heart’s surface anatomy; using compressed air delivered by a tethered line, the sleeve can twist itself, compress, or decompress to aid the organ in maintaining normal rhythms.

In the image below, you can see how the muscle fiber orientations of the outer layers of the heart (A) are mimicked by the device's design (B).

Roche et al. in Science Translational Medicine

In order to test the sleeve, the researchers implanted it in six sedated pigs who were put under general anesthesia and experienced drug-induced cardiac arrest. The result was an 88 percent restoration of cardiac output.

The device is also customizable to the individual, they write: "Our device could potentially be turned off when no longer required, and clinicians could tailor the device as a passive restraint device, partial support, or full support."

The study’s authors acknowledge that this is an early and limited trial, and more information is needed on how the sleeve will perform over long periods of time. But if they’re successful, the implantable sleeve could eliminate potential complications from drug therapies, serve as a bridge treatment for patients awaiting transplants, and help usher in a new era of “soft” robotics that could support other physical functions.

nextArticle.image_alt|e
iStock
arrow
Medicine
New Cancer-Fighting Nanobots Can Track Down Tumors and Cut Off Their Blood Supply
iStock
iStock

Scientists have developed a new way to cut off the blood flow to cancerous tumors, causing them to eventually shrivel up and die. As Business Insider reports, the new treatment uses a design inspired by origami to infiltrate crucial blood vessels while leaving the rest of the body unharmed.

A team of molecular chemists from Arizona State University and the Chinese Academy of Sciences describe their method in the journal Nature Biotechnology. First, they constructed robots that are 1000 times smaller than a human hair from strands of DNA. These tiny devices contain enzymes called thrombin that encourage blood clotting, and they're rolled up tightly enough to keep the substance contained.

Next, researchers injected the robots into the bloodstreams of mice and small pigs sick with different types of cancer. The DNA sought the tumor in the body while leaving healthy cells alone. The robot knew when it reached the tumor and responded by unfurling and releasing the thrombin into the blood vessel that fed it. A clot started to form, eventually blocking off the tumor's blood supply and causing the cancerous tissues to die.

The treatment has been tested on dozen of animals with breast, lung, skin, and ovarian cancers. In mice, the average life expectancy doubled, and in three of the skin cancer cases tumors regressed completely.

Researchers are optimistic about the therapy's effectiveness on cancers throughout the body. There's not much variation between the blood vessels that supply tumors, whether they're in an ovary in or a prostate. So if triggering a blood clot causes one type of tumor to waste away, the same method holds promise for other cancers.

But before the scientists think too far ahead, they'll need to test the treatments on human patients. Nanobots have been an appealing cancer-fighting option to researchers for years. If effective, the machines can target cancer at the microscopic level without causing harm to healthy cells. But if something goes wrong, the bots could end up attacking the wrong tissue and leave the patient worse off. Study co-author Hao Yan believes this latest method may be the one that gets it right. He said in a statement, "I think we are much closer to real, practical medical applications of the technology."

[h/t Business Insider]

nextArticle.image_alt|e
iStock
arrow
Medicine
New Peanut Allergy Patch Could Be Coming to Pharmacies This Year
iStock
iStock

About 6 million people in the U.S. and Europe have severe peanut allergies, including more than 2 million children. Now, French biotechnology company DBV Technologies SA has secured an FDA review for its peanut allergy patch, Bloomberg reports.

If approved, the company aims to start selling the Viaskin patch to children afflicted with peanut allergies in the second half of 2018. The FDA's decision comes in spite of the patch's disappointing study results last year, which found the product to be less effective than DBV hoped (though it did receive high marks for safety). The FDA has also granted Viaskin breakthrough-therapy and fast-track designations, which means a faster review process.

DBV's potentially life-saving product is a small disc that is placed on the arm or between the shoulder blades. It works like a vaccine, exposing the wearer's immune system to micro-doses of peanut protein to increase tolerance. It's intended to reduce the chances of having a severe allergic reaction to accidental exposure.

The patch might have competition: Aimmune Therapeutics Inc., which specializes in food allergy treatments, and the drug company Regeneron Pharmaceuticals Inc. are working together to develop a cure for peanut allergies.

[h/t Bloomberg]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios