CLOSE
Original image
YouTube // The Royal Institution

Watch How Zero Became a Number

Original image
YouTube // The Royal Institution

Zero is a tricky number. It's the only integer that is neither positive nor negative. You cannot divide by zero, but you can add, multiply, and subtract. It is simultaneously a number (in the sense of an integer) and the absence of a quantity (in the sense of "none"). So how did we get zero, and why is it so odd unusual?

In the short animation below, Dr. Hannah Fry explains the story of zero. It's a number with ancient origins and worldwide implications. Enjoy:

If you're not into video, Wolfram Mathworld explains the math aspects of zero very well (minus the history bits), and this Yale Global article handles the history. (You might also consider that zero can be a hero.)

arrow
fun
Can You Figure Out How Many Triangles Are in This Picture?

Time for another brain teaser. How many triangles do you see here? A Quora user posted the image above (which we spotted on MSN) for fellow brainiacs to chew on. See if you can figure it out. We’ll wait.

Ready?

So, as you can see, all the smaller triangles can combine to become bigger triangles, which is where the trick lies. If you count up every different triangle formed by the lines, you should get 24. (Don’t forget the big triangle!)

Some pedantic Quora users thought it through and realized there are even more triangles, if you really want to go there. There’s a triangle formed by the “A” in the signature in the right-hand corner, and if we’re counting the concept of triangles, the word “triangle” counts, too.

As math expert Martin Silvertant writes on Quora, “A triangle is a mathematical idea rather than something real; physical triangles are by definition not geometrically perfect, but approximations of triangles. In other words, both the pictorial triangles and the words referring to triangles are referents to the concept of a triangle.” So yes, you could technically count the word “triangle.”  (Silvertant also includes a useful graphic explaining how to find all the pictorial triangles.)

Check out the whole Quora discussion for in-depth explainers from users about their methods of figuring it out.

[h/t MSN]

Original image
iStock
arrow
video
This Puzzling Math Brain Teaser Has a Simple Solution
Original image
iStock

Fans of number-based brainteasers might find themselves pleasantly stumped by the following question, posed by TED-Ed’s Alex Gendler: Which sequence of integers comes next?

1, 11, 21, 1211, 111221, ?

Mathematicians may recognize this pattern as a specific type of number sequence—called a “look-and-say sequence"—that yields a distinct pattern. As for those who aren't number enthusiasts, they should try reading the numbers they see aloud (so that 1 becomes "one one," 11 is "two ones," 21 is "one two, one one,” and so on) to figure the answer.

Still can’t crack the code? Learn the surprisingly simple secret to solving the sequence by watching the video below.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios