ESA/Hubble & NASA, Acknowledgement: Judy Schmidt
ESA/Hubble & NASA, Acknowledgement: Judy Schmidt

Hubble Captures Incredible View of Galaxy-Sized Maser

ESA/Hubble & NASA, Acknowledgement: Judy Schmidt
ESA/Hubble & NASA, Acknowledgement: Judy Schmidt

NASA Goddard Space Flight Center recently released a stunning image by the Hubble Space Telescope of a megamaser—a galaxy that is basically one giant laser in space.

Iras 16399-0937, as the galaxy is called, does not blast visible light. It’s a little longer on the electromagnetic spectrum, in the microwave range. And there’s a lot going on out there. Unlike our own Milky Way galaxy, which has one core at its center, Iras has two, and they are merging slowly. The southern core, as one of the pair is called, is a star factory. The northern core, meanwhile, hosts a black hole that’s 100,000,000 times the mass of our Sun. The interaction of the two, and consequent galactic turmoil, gives the galaxy its beautiful shape.

The image was captured using two instruments on Hubble: the Near Infrared Camera and Multi-Object Spectrometer (which was superseded by the more capable Wide Field Camera 3 in 2009) and the Advanced Camera for Surveys, which was installed on Hubble in 2002 and is still in use.


Maser is actually an acronym: Microwave Amplification by Stimulated Emission of Radiation. So was laser, at least initially: Light Amplification by Stimulated Emission of Radiation. That's the difference between the two: microwave versus light. They're both coherent energy beams, but a maser emits microwave radiation, while a laser emits visible light. Einstein proposed the basic principle in 1917. Masers are used in everything from atomic clocks to NASA’s Deep Space Network. In the case of the latter, giant dishes receive weak signals from spacecraft as far from Earth as the interstellar medium. Cryogenically cooled ruby masers cleanly amplify the signals and allow data to be extracted.

You might not have heard of masers—only lasers—but there was a time when the opposite was true for many. “Phasers” on Star Trek are a shortened form of “photon maser.” Lasers had only been invented a few years before the debut of the television series. To the extent they were known, they certainly weren’t thought to be as powerful as the mighty maser, which was first built in 1953. (Gene Roddenberry worried during filming of the second pilot that people would say, "Oh, come on, lasers can't do that.") Even shortly after the laser was invented, theoretical work on masers led to a Nobel Prize in Physics in 1964.


Sometimes stimulated emissions of radiation occur naturally. Vaporized molecules in comets can mase, as can protostars in stellar nurseries. Sometimes masers go big time. A megamaser like Iras is 100 million times brighter than the dinky masers of the Milky Way. With that kind of power, the host galaxy itself is basically a cosmic maser beaming microwave emissions across the universe. There are also gigamasers, which are a billion times brighter than our masers, but that’s just showing off.

Extragalactic masers are useful to astronomers for, among other things, the independent calculation of the galaxy’s distance. Iras, for example, is 370 million light-years from Earth. For comparison, the closest star to our own—Proxima Centauri, of the Alpha Centauri star system—is 4.4 light-years away. Because of how nicely light-years scale, if the Earth were one inch from the Sun, Iras would be 370 million miles away. While we won’t be visiting anytime soon, we can still enjoy its natural, tempestuous beauty.

Scott Butner, Flickr // CC BY-NC-ND 2.0
Look Up! The Lyrid Meteor Shower Arrives Saturday Night
Scott Butner, Flickr // CC BY-NC-ND 2.0
Scott Butner, Flickr // CC BY-NC-ND 2.0

There is a thin line between Saturday night and Sunday morning, but this weekend, look up and you might see several of them. Between 11:59 p.m. on April 21 and dawn on Sunday, April 22, the Lyrid meteor shower will peak over the Northern Hemisphere. Make some time for the celestial show and you'll see a shooting star streaking across the night sky every few minutes. Here is everything you need to know.


Every 415.5 years, the comet Thatcher circles the Sun in a highly eccentric orbit shaped almost like a cat's eye. At its farthest from the Sun, it's billions of miles from Pluto; at its nearest, it swings between the Earth and Mars. (The last time it was near the Earth was in 1861, and it won't be that close again until 2280.) That's quite a journey, and more pressingly, quite a variation in temperature. The closer it gets to the Sun, the more debris it sheds. That debris is what you're seeing when you see a meteor shower: dust-sized particles slamming into the Earth's atmosphere at tens of thousands of miles per hour. In a competition between the two, the Earth is going to win, and "shooting stars" are the result of energy released as the particles are vaporized.

The comet was spotted on April 4, 1861 by A.E. Thatcher, an amateur skywatcher in New York City, earning him kudos from the noted astronomer Sir John Herschel. Clues to the comet's discovery are in its astronomical designation, C/1861 G1. The "C" means it's a long-period comet with an orbit of more than 200 years; "G" stands for the first half of April, and the "1" indicates it was the first comet discovered in that timeframe.

Sightings of the Lyrid meteor shower—named after Lyra, the constellation it appears to originate from—are much older; the first record dates to 7th-century BCE China.


Saturday night marks a first quarter Moon (visually half the Moon), which by midnight will have set below the horizon, so it won't wash out the night sky. That's great news—you can expect to see 20 meteors per hour. You're going to need to get away from local light pollution and find truly dark skies, and to completely avoid smartphones, flashlights, car headlights, or dome lights. The goal is to let your eyes adjust totally to the darkness: Find your viewing area, lay out your blanket, lay down, look up, and wait. In an hour, you'll be able to see the night sky with great—and if you've never done this before, surprising—clarity. Don't touch the smartphone or you'll undo all your hard ocular work.

Where is the nearest dark sky to where you live? You can find out on the Dark Site Finder map. And because the shower peaks on a Saturday night, your local astronomy club is very likely going to have an event to celebrate the Lyrids. Looking for a local club? Sky & Telescope has you covered.


You don't need a telescope to see a meteor shower, but if you bring one, aim it south to find Jupiter. It's the bright, unblinking spot in the sky. With a telescope, you should be able to make out its stripes. Those five stars surrounding it are the constellation Libra. You'll notice also four tiny points of light nearby. Those are the Galilean moons: Io, Europa, Ganymede, and Callisto. When Galileo discovered those moons in 1610, he was able to prove the Copernican model of heliocentricity: that the Earth goes around the Sun.


First: Don't panic. The shower peaks on the early morning of the 22nd. But it doesn't end that day. You can try again on the 23rd and 24th, though the numbers of meteors will likely diminish. The Lyrids will be back next year, and the year after, and so on. But if you are eager for another show, on May 6, the Eta Aquariids will be at their strongest. The night sky always delivers.

New NASA Satellite Called TESS Could Discover Thousands of New Planets

Since NASA’s Kepler spacecraft launched in 2009, the space agency has found and confirmed a whopping 2343 new planets. Of those, 30 are considered to be situated in a “habitable zone,” an area in which a planet’s surface could theoretically contain water.

A new satellite, set to launch today, is expected to find thousands more planets outside of our solar system, known as exoplanets. TESS, short for the Transiting Exoplanet Survey Satellite, is NASA’s latest effort to plumb the depths and darkness of outer space in search of other Earth-like planets—including those that could potentially support life.

TESS is slated to complete a two-year survey of the “solar neighborhood,” a general region which comprises more than 200,000 of the brightest nearby stars. To find these outlier planets, NASA scientists will be keeping an eye out for temporary changes in brightness, which indicate that a planet is blocking its host star.

According to Martin Still, the program scientist working on the TESS mission, the launch comes “with certainty” that TESS will find many nearby exoplanets. "We expect to find a whole range of planet sizes, between planets the size of Mercury or even the Moon—our Moon—to planets the same size as Jupiter and everything in between,” Still said in a NASA interview.

While the Kepler mission was considered a major success, NASA noted that most of the planets it recorded are those that orbit faint, faraway stars, making it difficult to conduct follow-up observations. The stars that TESS plans to survey will be 30 to 100 times brighter than those observed by its predecessor. This allows for newly detected planets and their atmospheres to be characterized more easily.

“Before Kepler launched, we didn't know for sure if Earth-sized planets existed,” Elisa V. Quintana, a NASA astrophysicist, told Reddit. “Kepler was a statistical survey that looked at a small patch of sky for four years and taught us that Earths are everywhere. TESS is building on Kepler in the sense that TESS wants to find more small planets but ones that orbit nearby, bright stars. These types of planets that are close to us are much more easy to study, and we can measure their masses from telescopes here on Earth.”

The most common categories of exoplanets are Earth- and Super Earth–sized masses—the latter of which are larger than Earth but smaller than Uranus and Neptune.

TESS is scheduled to launch from the Cape Canaveral Air Force Station in Florida on a SpaceX Falcon 9 rocket at 6:32pm EDT today.

For more information about TESS, check out this video from NASA.


More from mental floss studios