iStock
iStock

‘Pregnancy Brain’ Is Real, But It’s Not What We Thought

iStock
iStock

Scientists say pregnancy creates lasting changes in women’s brains that may help prepare them for motherhood. They published their findings in the journal Nature Neuroscience.

“Pregnancy involves radical hormone surges and biological adaptations,” the authors write. “However, the effects of pregnancy on the human brain are virtually unknown.”

To investigate these effects, neuroscientists recruited couples who were trying to conceive for the first time and gave them brain scans. Some of the couples became parents and some did not, which created a sort of built-in control group. Once the babies were born, the researchers scanned participants’ brains; two years later, they did it again.

The scans revealed a clear difference between the two groups. New moms’ brains were missing something: a substantial amount of gray matter in the region associated with socialization. The disparity between the two groups’ brains were so significant that the researchers could spot which women had been pregnant just by looking at their scans.

But far from being a problem, the researchers say, this reduction in gray matter may actually be the brain’s way of paving the way for a strong mother-child relationship. The researchers found no memory loss or other cognitive problems. In other words, the gray matter loss isn’t brain damage. It’s tidying up in preparation for the challenging new cognitive work of motherhood.

To confirm this idea, the scientists gave the new moms another round of brain scans, this time while the women looked at pictures of their babies and babies they’d never seen before. Sure enough, the tidied-up portions of the women’s brains were especially active as they gazed on their own offspring. The more gray matter lost, the stronger the connection.

Two years after giving birth, new moms’ brains were still lighter on gray matter in that region than they had been before they became pregnant.

Co-author Oscar Vilarroya is a neuroscientist at the Universitat Autònoma de Barcelona in Spain. “The findings point to an adaptive process related to the benefits of better detecting the needs of the child, such as identifying the newborn's emotional state,” he said in a statement. “Moreover, they provide primary clues regarding the neural basis of motherhood, perinatal mental health and brain plasticity in general."

nextArticle.image_alt|e
Phil Walter, Getty Images
How Michael Jackson's Dancing Defied the Laws of Biomechanics
Phil Walter, Getty Images
Phil Walter, Getty Images

From the time he debuted the moonwalk on broadcast television in 1983, Michael Jackson transcended the label of "dancer." His moves seemed to defy gravity as well as the normal limits of human flexibility and endurance.

Now we have some scientific evidence for that. Three neurosurgeons from the Postgraduate Institute of Medical Education and Research in Chandigarh, India, recently published a short paper in the Journal of Neurosurgery: Spine that examines just how remarkable one of Jackson's signature moves really was.

In the 1988 video for "Smooth Criminal" and subsequent live performances, Jackson is seen taking a break from his constant motion to stand in place and lean 45 degrees forward. Both he and his dancers keep their backs straight. Biomechanically, it's not really possible for a human to do. And even though he had a little help, the neurosurgeons found it to be a pretty impressive feat.

An illustration of Michael Jackson's 'Smooth Criminal' dance move.
Courtesy of 'Journal of Neurosurgery: Spine.' Copyright Manjul Tripathi, MCh.

Study co-author Manjul Tripathi told CNN that humans can't lean forward much more than 25 or 30 degrees before they risk landing on their faces. (He knows, because he tried it.) Normally, bending involves using the hip as a fulcrum, and erector spinae muscles to support our trunk. When Jackson leaned over, he transferred the fulcrum to the ankle, with the calf and Achilles tendon under strain. Since that part of the body is not equipped to support leaning that far forward without bending, the "Smooth Criminal" move was really a biomechanical illusion. The act was made possible by Jackson's patented shoe, which had a "catch" built under the heel that allowed him to grasp a protruding support on the stage. Secured to the floor, he was able to achieve a 45-degree lean without falling over.

But the neurosurgeons are quick to point out that the shoes are only part of the equation. To achieve the full 45-degree lean, Jackson would have had to have significant core strength as well as a strong Achilles tendon. An average person equipped with the shoe would be unable to do the move.

How does this apply to spinal biomechanics research? The authors point out that many dancers inspired by Jackson are continuing to push the limits of what's possible, leading to injury. In one 2010 paper, researchers surveyed 312 hip-hop dancers and found that 232 of them—almost 75 percent of the cohort—reported a total of 738 injuries over a six-month period. That prevalence could mean neurosurgeons are facing increasingly complex or unique spinal issues. The surgeons hope that awareness of potential risks could help mitigate problems down the road.

[h/t CNN]

nextArticle.image_alt|e
iStock
What Is Foreign Accent Syndrome?
iStock
iStock

One night in 2016, Michelle Myers—an Arizona mom with a history of migraines—went to sleep with a splitting headache. When she awoke, her speech was marked with what sounded like an British accent, despite having never left the U.S. Myers is one of about 100 people worldwide who have been diagnosed with Foreign Accent Syndrome (FAS), a condition in which people spontaneously speak with a non-native accent.

In most cases, FAS occurs following a head injury or stroke that damages parts of the brain associated with speech. A number of recent incidences of FAS have been well documented: A Tasmanian woman named Leanne Rowe began speaking with a French-sounding accent after recovering from a serious car accident, while Kath Lockett, a British woman, underwent treatment for a brain tumor and ended up speaking with an accent that sounds somewhere between French and Italian.

The first case of the then-unnamed syndrome was reported in 1907 when a Paris-born-and-raised man who suffered a brain hemorrhage woke up speaking with an Alsatian accent. During World War II, neurologist Georg Herman Monrad-Krohn compiled the first comprehensive case study of the syndrome in a Norwegian woman named Astrid L., who had been hit on the head with shrapnel and subsequently spoke with a pronounced German-sounding accent. Monrad-Krohn called her speech disorder dysprosody: her choice of words and sentence construction, and even her singing ability, were all normal, but her intonation, pronunciation, and stress on syllables (known as prosody) had changed.

In a 1982 paper, neurolinguist Harry Whitaker coined the term "foreign accent syndrome" for acquired accent deviation after a brain injury. Based on Monrad-Kohn's and other case studies, Whitaker suggested four criteria for diagnosing FAS [PDF]:

"The accent is considered by the patient, by acquaintances, and by the investigator to sound foreign.
It is unlike the patient’s native dialect before the cerebral insult.
It is clearly related to central nervous system damage (as opposed to a hysteric reaction, if such exist).
There is no evidence in the patient’s background of being a speaker of a foreign language (i.e., this is not like cases of polyglot aphasia)."

Not every person with FAS meets all four criteria. In the last decade, researchers have also found patients with psychogenic FAS, which likely stems from psychological conditions such as schizophrenia rather than a physical brain injury. This form comprises fewer than 10 percent of known FAS cases and is usually temporary, whereas neurogenic FAS is typically permanent.

WHAT’S REALLY HAPPENING?

While scientists are not sure why certain brain injuries or psychiatric problems give rise to FAS, they believe that people with FAS are not actually speaking in a foreign accent. Instead, their neurological damage impairs their ability to make subtle muscle movements in the jaw, tongue, lips, and larynx, which results in pronunciation that mimics the sound of a recognizable accent.

"Vowels are particularly susceptible: Which vowel you say depends on where your tongue is in your mouth," Lyndsey Nickels, a professor of cognitive science at Australia's Macquarie University, wrote in The Conversation. "There may be too much or too little muscle tension and therefore they may 'undershoot' or 'overshoot' their target. This leads to the vowels sounding different, and sometimes they may sound like a different accent."

In Foreign Accent Syndromes: The Stories People Have to Tell, authors Nick Miller and Jack Ryalls suggest that FAS could be one stage in a multi-phase recovery from a more severe speech disorder, such as aphasia—an inability to speak or understand speech that results from brain damage.

People with FAS also show wide variability in their ability to pronounce sounds, choose words, or stress the right syllables. The accent can be strong or mild. Different listeners may hear different accents from the speaker with FAS (Lockett has said people have asked her if she's Polish, Russian, or French).

According to Miller and Ryalls, few studies have been published about speech therapy for treating FAS, and there's no real evidence that speech therapy makes a difference for people with the syndrome. More research is needed to determine if advanced techniques like electromagnetic articulography—visual feedback showing tiny movements of the tongue—could help those with FAS regain their original speaking manner.

Today, one of the pressing questions for neurologists is understanding how the brain recovers after injury. For that purpose, Miller and Ryalls write that "FAS offers a fascinating and potentially fruitful forum for gaining greater insights into understanding the human brain and the speech processes that define our species."

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios