CLOSE
Original image
Justin Kern via Flickr Creative Commons // CC BY-ND 2.0

Chicago Is Colder Than Mars This Week

Original image
Justin Kern via Flickr Creative Commons // CC BY-ND 2.0

Chicagoans preparing for holiday feasts this week are in luck: Any food that doesn’t fit in the freezer can just be left outside. The Windy City has been sustaining temperatures colder than most parts of Earth—and, as DNAInfo reports, all of Mars.

The record for lowest temperature in Chicago was set on December 19, 1983, at a blistering -14 degrees Fahrenheit. But 33 years later to the day, that record was nearly broken, as the frozen city reached -13°F overnight. With wind chill, that number dropped to -30°F. By comparison, the surface of Mars looked positively toasty at a comfortable -2°F.

The brutal cold in Chicago has prompted the closing of more than 300 area schools and the cancellation of dozens of flights, and has slowed local trains. There are a few places on the planet that are colder—the North Pole, for example—but most of them are sparsely populated, if anyone lives there at all.

Temperatures began to thaw by Tuesday, December 20, but if Monday’s freeze was any indication, Chicago residents are going to be in for one heck of a winter.

Original image
RAMMB/CIRA
arrow
science
The Coolest Meteorological Term You'll Learn This Week
Original image
Two tropical cyclones orbiting around each other in the northwestern Pacific Ocean on July 25, 2017.
RAMMB/CIRA

What happens when two hurricanes start to invade each other's personal space? It's easy to picture the two hurricanes merging into one megastorm that tears across the ocean with twice the fury of a normal storm, but what really happens is less dramatic (although it is a beautiful sight to spy on with satellites). Two cyclones that get too close to one another start to feel the pull of a force called the Fujiwhara Effect, a term that's all the rage in weather news these days.

The Fujiwhara Effect occurs when two cyclones track close enough to each other that the storms begin orbiting around one another. The counterclockwise winds spiraling around each cyclone force them to participate in what amounts to the world's largest game of Ring Around the Rosie. The effect is named after Sakuhai Fujiwhara, a meteorologist who studied this phenomenon back in the early 1900s.

The extent to which storms are affected by the Fujiwhara Effect depends on the strength and size of each system. The effect will be more pronounced in storms of equal size and strength; when a large and small storm get too close, the bigger storm takes over and sometimes even absorbs its lesser counterpart. The effect can have a major impact on track forecasts for each cyclone. The future of a storm completely depends on its new track and the environment it suddenly finds itself swirling into once the storms break up and go their separate ways.

We've seen some pretty incredible examples of the Fujiwhara Effect over the years. Hurricane Sandy's unusual track was in large part the result of the Fujiwhara Effect; the hurricane was pulled west into New Jersey by a low-pressure system over the southeastern United States. The process is especially common in the northwestern Pacific Ocean, where typhoons fire up in rapid succession during the warmer months. We saw a great example of the effect just this summer when two tropical cyclones interacted with each other a few thousand miles off the coast of Japan.

Weather Channel meteorologist Stu Ostro pulled a fantastic animated loop of two tropical cyclones named Noru and Kulap swirling around each other at the end of July 2017 a few thousand miles off the coast of Japan.

Typhoon Noru was a small but powerful storm that formed at about the same latitude as Kulap, a larger but much weaker storm off to Noru's east. While both storms were moving west in the general direction of Japan, Kulap moved much faster than Noru and eventually caught up with the latter storm. The Fujiwhara Effect caused Typhoon Noru to stop dead in its tracks, completely reverse its course and eventually perform a giant loop over the ocean. Typhoon Noru quickly strengthened and became the dominant cyclone; the storm absorbed Kulap and went on to become a super typhoon with maximum winds equivalent to a category 5 hurricane.

Original image
Kelly Gorham
arrow
Space
Balloon Cams Will Offer Unparalleled Views of the Total Solar Eclipse
Original image
Kelly Gorham

The August 2017 total solar eclipse should be visible to some degree from just about everywhere in the continental United States—that is, if the weather cooperates. But now, even if it doesn't, everyone will be able to watch along, thanks to livestreamed video from balloon cams drifting miles above the Earth.

Astrophysicist Angela Des Jardins of Montana State University (MSU) got the idea to monitor the magnificent cosmic event from the air after reading about an airplane pilot's flight through the path of a 2013 eclipse. She thought her students might enjoy the chance to get an up-close look for themselves.

But what started as a class project quickly, well, ballooned. At last count, teams from more than 50 other schools had joined the Eclipse Ballooning Project. The core of the work remains close to home; MSU students have designed, built, and tested the equipment, and even offered multi-day training for students from other schools. Undergrads in the computer science and engineering programs even created the software that air traffic controllers will use to track the balloons on the big day.

Students carry a large white weather balloon across a tarmac.
Photo courtesy of the Montana Space Grant Consortium

The next step was to get the balloon cam footage to a larger audience. Seeing no reason to think small, Des Jardins went straight to the source, inviting NASA and the website Stream to join the fun. The space agency is now beefing up its website in anticipation of 500 million livestream viewers.

And what a view it should be. The balloons will rise more than 80,000 feet—even higher than NASA's airplane-mounted telescopes.

"It's a space-like perspective," Des Jardins said in a press statement. "From that height you can see the curvature of the Earth and the blackness of space."

Online or outside, Des Jardins says viewers can expect a kind of "deep twilight, with basically a 360-degree sunset" during the eclipse.

She urges everyone to get outside if they can to see the event with their own eyes, but expects the balloon cams will deliver something really special.

"On the ground, an eclipse just kind of happens to you. It just gets dark," Des Jardins told New Scientist. "From the air, you can see it coming and going. I think that perspective is really profound."

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios