CLOSE
Tangopaso via Wikimedia Commons 
Tangopaso via Wikimedia Commons 

10 Stubbed Facts About Your Big Toe

Tangopaso via Wikimedia Commons 
Tangopaso via Wikimedia Commons 

The human body is an amazing thing. For each one of us, it’s the most intimate object we know. And yet most of us don’t know enough about it: its features, functions, quirks, and mysteries. Our series The Body explores human anatomy part by part. Think of it as a mini digital encyclopedia with a dose of wow.

Your toes are possibly the most underappreciated, yet hard-working parts of your body. Though you may give little thought to them until you stub one stumbling out of bed in the night, these facts about your big toe might surprise you.

1. THE BIG TOE CARRIES THE GREATEST LOAD.

Each time you take a step, your foot rolls forward, shifting your body weight onto the ball of the foot as you prepare to push off into your next step. For most people, this means your big toe bears the load of your weight as you push off. Considering how many steps you take in a day, it’s no wonder people often experience pain in this toe.

2. TOE PROSTHETICS DATE BACK TO THE EGYPTIANS.

Jon Bodsworth via Wikimedia Commons


 
Humans have been figuring out ways to work around faulty toes for centuries. Researchers at Manchester University's KNH Centre for Biomedical Egyptology found a wood and leather prosthetic of a big toe on the mummified foot of a 50- to 60-year-old woman who had undergone a toe amputation. Dating to the first millennium BCE, it's known as "the Cairo Toe."

3. YOUR BIG TOE HAS ONLY TWO BONES.

Despite being the biggest toe on the foot, the big toe only consists of two phalanges (or toe bones), the distal and proximal. Your other toes have three bones, but most of your big toe is made up of flesh and muscle.

4. YOUR BIG TOE AND GENITALS ARE NEIGHBORS … IN YOUR BRAIN.

The somatosensory cortex of your brain receives sensory information from all over the body. The part of the cortex that receives input from your feet happens to adjacent to the area that receives information from your genitals.

5. THIS PROXIMITY MIGHT EXPLAIN FOOT FETISHES.

Vilayanur Ramachandran, director of the Center for Brain and Cognition at the University of California, San Diego theorizes that foot fetishes could possibly result from a cross-wiring in the brain between the foot and the genital sensory centers.

6. GOUT OFTEN BEGINS IN THE BIG TOE.

Henry VIII of England as painted by Hans Holbein the Younger. King Henry was reputed to have suffered from gout. Image Credit: via Wikimedia Commons // Public Domain

 
The disease, a form of arthritis where sharp uric acid crystals build up in the body, frequently appears first as pain and swelling in the big toes, though researchers aren’t entirely sure why this is. Though long known as the "disease of kings" because it afflicted those with access to rich food and drink, gout is increasingly common among us, er, commoners.

7. THERE'S A REASON STUBBING YOUR TOE HURTS SO &!@$# MUCH.

Toes are loaded with numerous nerve-ending receptors called nociceptors that are highly sensitive to actual and potential tissue damage. “When you stub your toe, you’re massively stimulating a bunch of these nerve fibers at the same time. Those signals integrate in your spinal cord, which in turn relays that information to your brain. “It’s just a really big input,” Allan Basbaum, chair of UCSF’s Department of Anatomy, told WIRED. “The brain reads that, and it hurts like hell.”

8. THE BIG TOE SEPARATES HUMANS FROM APES.

Recently scientists at the University of the Witwatersrand in Johannesburg, South Africa determined that the base of the big toe, known as the hallux, is what makes it possible for humans to walk and run upright. They concluded that in other living apes, “the big toe is more thumb-like in facilitating grasping capabilities,” such as tree-climbing behaviors. In other words, our big toes demonstrate that humans are uniquely adapted to standing, walking, and running upright on two legs.

9. SURGEONS CAN MAKE THUMBS OUT OF BIG TOES …

It’s much easier to live without a big toe than it is a thumb. That's why surgeons have begun to master a procedure called a toe-to-thumb transfer in which they replace injured or severed thumbs with big toes. While it sounds gruesome, it’s a life-changing operation that can significantly improve people’s quality of life, and ability to grip things again. They sometimes use other toes as well (warning: graphic images).

10. … AND LOSING YOUR BIG TOE WON'T STOP YOU FROM GETTING AROUND.

While your gait may become uneven, losing a big toe—or even two—won’t prevent you from running, walking, or dancing. It will take some getting used to, but your feet are remarkably adaptable even without big toes.

nextArticle.image_alt|e
iStock / Collage by Jen Pinkowski
arrow
The Elements
9 Essential Facts About Carbon
iStock / Collage by Jen Pinkowski
iStock / Collage by Jen Pinkowski

How well do you know the periodic table? Our series The Elements explores the fundamental building blocks of the observable universe—and their relevance to your life—one by one.
 
 
It can be glittering and hard. It can be soft and flaky. It can look like a soccer ball. Carbon is the backbone of every living thing—and yet it just might cause the end of life on Earth as we know it. How can a lump of coal and a shining diamond be composed of the same material? Here are eight things you probably didn't know about carbon.

1. IT'S THE "DUCT TAPE OF LIFE."

It's in every living thing, and in quite a few dead ones. "Water may be the solvent of the universe," writes Natalie Angier in her classic introduction to science, The Canon, "but carbon is the duct tape of life." Not only is carbon duct tape, it's one hell of a duct tape. It binds atoms to one another, forming humans, animals, plants and rocks. If we play around with it, we can coax it into plastics, paints, and all kinds of chemicals.

2. IT'S ONE OF THE MOST ABUNDANT ELEMENTS IN THE UNIVERSE.

It sits right at the top of the periodic table, wedged in between boron and nitrogen. Atomic number 6, chemical sign C. Six protons, six neutrons, six electrons. It is the fourth most abundant element in the universe after hydrogen, helium, and oxygen, and 15th in the Earth's crust. While its older cousins hydrogen and helium are believed to have been formed during the tumult of the Big Bang, carbon is thought to stem from a buildup of alpha particles in supernova explosions, a process called supernova nucleosynthesis.

3. IT'S NAMED AFTER COAL.

While humans have known carbon as coal and—after burning—soot for thousands of years, it was Antoine Lavoisier who, in 1772, showed that it was in fact a unique chemical entity. Lavoisier used an instrument that focused the Sun's rays using lenses which had a diameter of about four feet. He used the apparatus, called a solar furnace, to burn a diamond in a glass jar. By analyzing the residue found in the jar, he was able to show that diamond was comprised solely of carbon. Lavoisier first listed it as an element in his textbook Traité Élémentaire de Chimie, published in 1789. The name carbon derives from the French charbon, or coal.

4. IT LOVES TO BOND.

It can form four bonds, which it does with many other elements, creating hundreds of thousands of compounds, some of which we use daily. (Plastics! Drugs! Gasoline!) More importantly, those bonds are both strong and flexible.

5. NEARLY 20 PERCENT OF YOUR BODY IS CARBON.

May Nyman, a professor of inorganic chemistry at Oregon State University in Corvallis, Oregon tells Mental Floss that carbon has an almost unbelievable range. "It makes up all life forms, and in the number of substances it makes, the fats, the sugars, there is a huge diversity," she says. It forms chains and rings, in a process chemists call catenation. Every living thing is built on a backbone of carbon (with nitrogen, hydrogen, oxygen, and other elements). So animals, plants, every living cell, and of course humans are a product of catenation. Our bodies are 18.5 percent carbon, by weight.

And yet it can be inorganic as well, Nyman says. It teams up with oxygen and other substances to form large parts of the inanimate world, like rocks and minerals.

6. WE DISCOVERED TWO NEW FORMS OF IT ONLY RECENTLY.

Carbon is found in four major forms: graphite, diamonds, fullerenes, and graphene. "Structure controls carbon's properties," says Nyman.  Graphite ("the writing stone") is made up of loosely connected sheets of carbon formed like chicken wire. Penciling something in actually is just scratching layers of graphite onto paper. Diamonds, in contrast, are linked three-dimensionally. These exceptionally strong bonds can only be broken by a huge amount of energy. Because diamonds have many of these bonds, it makes them the hardest substance on Earth.

Fullerenes were discovered in 1985 when a group of scientists blasted graphite with a laser and the resulting carbon gas condensed to previously unknown spherical molecules with 60 and 70 atoms. They were named in honor of Buckminster Fuller, the eccentric inventor who famously created geodesic domes with this soccer ball–like composition. Robert Curl, Harold Kroto, and Richard Smalley won the 1996 Nobel Prize in Chemistry for discovering this new form of carbon.

The youngest member of the carbon family is graphene, found by chance in 2004 by Andre Geim and Kostya Novoselov in an impromptu research jam. The scientists used scotch tape—yes, really—to lift carbon sheets one atom thick from a lump of graphite. The new material is extremely thin and strong. The result: the Nobel Prize in Physics in 2010.

7. DIAMONDS AREN'T CALLED "ICE" BECAUSE OF THEIR APPEARANCE.

Diamonds are called "ice" because their ability to transport heat makes them cool to the touch—not because of their look. This makes them ideal for use as heat sinks in microchips. (Synthethic diamonds are mostly used.) Again, diamonds' three-dimensional lattice structure comes into play. Heat is turned into lattice vibrations, which are responsible for diamonds' very high thermal conductivity.

8. IT HELPS US DETERMINE THE AGE OF ARTIFACTS—AND PROVE SOME OF THEM FAKE.

American scientist Willard F. Libby won the Nobel Prize in Chemistry in 1960 for developing a method for dating relics by analyzing the amount of a radioactive subspecies of carbon contained in them. Radiocarbon or C14 dating measures the decay of a radioactive form of carbon, C14, that accumulates in living things. It can be used for objects that are as much as 50,000 years old. Carbon dating help determine the age of Ötzi the Iceman, a 5300-year-old corpse found frozen in the Alps. It also established that Lancelot's Round Table in Winchester Cathedral was made hundreds of years after the supposed Arthurian Age.

9. TOO MUCH OF IT IS CHANGING OUR WORLD.

Carbon dioxide (CO2) is an important part of a gaseous blanket that is wrapped around our planet, making it warm enough to sustain life. But burning fossil fuels—which are built on a carbon backbone—releases more carbon dioxide, which is directly linked to global warming. A number of ways to remove and store carbon dioxide have been proposed, including bioenergy with carbon capture and storage, which involves planting large stands of trees, harvesting and burning them to create electricity, and capturing the CO2 created in the process and storing it underground. Yet another approach that is being discussed is to artificially make oceans more alkaline in order to let them to bind more CO2. Forests are natural carbon sinks, because trees capture CO2 during photosynthesis, but human activity in these forests counteracts and surpasses whatever CO2 capture gains we might get. In short, we don't have a solution yet to the overabundance of C02 we've created in the atmosphere.

nextArticle.image_alt|e
iStock
arrow
science
8 Myths About Dead Bodies You Probably Think Are True
iStock
iStock

Bodies are weird enough, but it's the dead ones that hold real intrigue. The fact that most of us just don't spend that much time around them means it's hard to separate truth from fiction; corpses have been thought to be responsible for plagues, as well as to carry magic healing properties. Below, some dead body myths that won't give up the ghost—and explanations for the real-life science behind them.

1. HAIR AND NAILS GROW AFTER DEATH.

Corpse under sheet with hand sticking out

Not true! The cell division driving hair and nail growth stops when the body dies and the heart no longer pumps oxygen-filled blood throughout the circulatory system. It does look like things keep growing, though. When a dead body's skin loses hydration, it retracts—and retraction along the nail bed makes it appear as if the nails are getting longer. As for hair, drying skin on the face and head "pulls back towards the skull, making stubble appear more prominent," writes Claudia Hammond for the BBC. "Goosebumps caused by the contraction of the hair muscles can add to the effect."

2. DEAD BODIES ARE DANGEROUS.

There's no science to back up the idea that a dead and decomposing body is harmful to the living just by virtue of its being dead. This might sound obvious, but the belief that disease came from breathing in air infected by corpses was once common.

Miasmatic theory, as it was called, was a widespread belief among members of the medical profession (and the public) in the 19th century. Miasma, an ancient Greek word for "pollution," was the bad air coming from "rotting corpses, the exhalations of other people already infected, sewage, or even rotting vegetation" and was thought to be responsible for the spread of disease. Fortunately, this belief was eventually replaced by germ theory.

3. … AND MULTIPLE DEAD BODIES ARE EXTRA DANGEROUS.

In a publication from the Pan American Health Organization (a division of the World Health Organization), Donna Eberwine explains that the belief that dead bodies spread disease "remains a chronic problem in disaster relief efforts." After natural disasters, there is often a hysteria around dead bodies and a rush to immediately bury them, which distracts relief efforts from more pressing concerns. "The microorganisms that are involved in decomposition are not the kind that cause disease," Eberwine writes. "And most viruses and bacteria that do cause disease cannot survive more than a few hours in a dead body."

There are some exceptions. The level of Ebola virus in dead victims remains high, and their remains should only be handled by people in protective gear (and buried quickly). HIV can live for up to 16 days in a body held under refrigeration, and other blood-borne viruses like hepatitis, along with tuberculosis and gastrointestinal infections, can pose a risk. "The risk of contagion can be minimized with basic precautions and proper hygiene," Eberwine writes.

4. EMBALMING MAKES DEAD BODIES "SAFER."

Egyptian sarcophagus

"Embalming provides no public health benefit," according to the Funeral Consumer's Alliance (a nonprofit focused on affordable death care), citing the Centers for Disease Control and Canadian authorities. While individual morticians might say that a body must be embalmed before viewing, burial, or cremation, the process is generally not legally required. Moreover, since a dead body is usually not in itself harmful, embalming does not make it any safer. On the flip side, embalming chemicals are actually quite toxic, and embalmers must cover their entire body and wear a respirator while working. 

5. DEAD BODIES SIT UP ON THE MEDICAL TABLE.

This horror-movie trope just isn't real. During decomposition, a body might twitch or make small movements and noises due to the gas and waste released by bacteria. A decomposing corpse can definitely move a little, but sitting straight up is just not going to happen.

6. BURYING A BODY WITHOUT A COFFIN OR VAULT MEANS IT WILL CONTAMINATE THE GROUNDWATER.

Nope! Burials usually occur at 3.5 feet below the surface, whereas water can be 75 feet underground. "Mandatory setbacks from known water sources also ensure that surface water is not at risk," the Green Burial Council explains [PDF]. Additionally, because microorganisms living in the soil will break down the chemical compounds that remain in a dead body, we actually give out "more toxic chemicals during a day of living than a whole body will decomposing."

7. CREMAINS ARE "ASH."

Wall of cremation urns

Though we often talk of "scattering ashes," cremains are a little more complicated. Once a body intended for cremation has been burned in what's called a retort, what's left will be put in a cremulator. Sort of like a blender, the cremulator uses ball bearings or rotating blades to pulverize the bones and other remnants into a "grayish, coarse material, like fine gravel," as HowStuffWorks puts it.

8. ALL IN ALL, MAYBE DEATH ISN'T AS SCARY AS WE THINK.

According to psychological scientist Kurt Gray, it's possible that death isn't quite as terrifying as we think it is. Gray studied the responses of death row inmates and terminally ill patients as well as those of people asked to imagine they had untreatable cancer, and found that "while it's natural to fear death in the abstract, the closer one actually gets to it, the more positive he or she becomes," as New York Magazine explains. This may be due to something called the "psychological immune system," a term coined by Harvard psychologist Dan Gilbert in his book Stumbling on Happiness. According to Gray, our psychological immune system is engaged when bad things happen. "So when one is faced with death, all sorts of rationalization and meaning-making processes come in," he told New York Magazine. That may sound like your brain's trying to give you a cop-out, but it's much better than living in terror.

All photos courtesy of iStock.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios