Glow-in-the-Dark Mushrooms Are a Blacklight Poster Come to Life

Mother Nature may be timeless, but some of her creations seem kind of, well, dated. Take bioluminescent fungi, for example: funky fluorescent figures that look like they popped right out of a blacklight poster from 1996. Check out the timelapse video below from Planet Earth II for more glowing weirdness and read on for an explanation (as much as something like glowing mushrooms can be explained).

Glowing mushrooms are not a new phenomenon. Both Aristotle and Pliny the Elder wrote of the “foxfire” produced by mushrooms on rotting logs. So far, scientists have discovered 81 different species of bioluminescent fungi. They appear across the globe and take all kinds of weird shapes, but they always emit the same eerie green light.

The precise purpose of that green light remains to be seen. Bioluminescence is kind of the Swiss army knife of natural skills. Some animals use it for hunting, while others use it to hide. Others light up to find mates and reproduce. Glowing fungi could be doing any of these things. Some glowing species are edible, and it’s possible that they’re using their light to attract nocturnal insects who will eat them and scatter their spores. But they might also be using their light for protection, by luring in predators of mushroom-eating insects or by advertising their toxicity. It’s also possible that glowing is simply a byproduct of their natural chemical processes. We really don’t know. The mushrooms remain a mystery.

[h/t Sploid]

nextArticle.image_alt|e
Ryan von Linden/New York Department of Environmental Conservation, Flickr // CC BY 2.0
Scientists May Have Found a Cure for Deadly White-Nose Syndrome in Bats
Ryan von Linden/New York Department of Environmental Conservation, Flickr // CC BY 2.0
Ryan von Linden/New York Department of Environmental Conservation, Flickr // CC BY 2.0

White-nose syndrome, a disease that affects insect-eating bats, is one of the most devastating wildlife diseases on record. But there may be a relatively simple way to stop it, according to new research: UV light.

As New Atlas reports, a new study from the U.S. Forest Service and the University of New Hampshire has found that only a few seconds of exposure to ultraviolet light causes permanent damage to the fungus that causes white-nose syndrome, Pseudogymnoascus destructans. The results were published in Nature Communications on January 2.

White-nose syndrome has killed millions of bats in the United States and Canada over the past decade, according to the USGS. Bats infected by the fungus use more energy during their winter hibernation than healthy bats, meaning they might run out of their energy reserves and die before spring comes. The infection causes dangerous physiological changes including severe wing damage, weight loss, and dehydration.

The P. destructans fungus can grow only in temperatures ranging from 39°F to 68°F, so it infects bats only when they're hibernating. But it's also hard to treat diseased bats as they hibernate, making it even more difficult for scientists to stop the disease. And stopping it is a big deal, not just for wildlife organizations but for governments and farmers, since the bats at risk are important predators that feed on crop-destroying insects. Previous research has shown that UV light can screen hibernating bats for white-nose syndrome—the skin lesions that form on the wings of infected bats glow orange-yellow under UV light—but this is the first study to show it can also be a treatment.

The researchers exposed six closely related Pseudogymnoascus species to UV light for a few seconds to see how the fungi would react. (P. destructans was the only pathogenic species involved.) They found that P. destructans lacked a key enzyme that helps it repair the DNA damage inflicted by exposure to UV light. Whereas other species weren't affected by the light, P. destructans exposed to a low dose of UV light had only a 15 percent survival rate. When that dosage was doubled (to what was still a moderate dose), the species had less than a 1 percent survival rate.

This extreme sensitivity to UV light could be a way for scientists to battle white-nose syndrome. But first they'll have to test the effects of the light on infected, hibernating bats, instead of just working with samples of the fungus in the lab. It's possible that the light could damage the bats' skin, killing off important species in their microbiome, or have some other unintended effect. But even as a preliminary finding, this is a hopeful step.

nextArticle.image_alt|e
Paul Mannix, Wikimedia Commons // CC BY-SA 2.0
Scientists Improve Drug Safety—for Penguins
Paul Mannix, Wikimedia Commons // CC BY-SA 2.0
Paul Mannix, Wikimedia Commons // CC BY-SA 2.0
Penguins are adorable. Their infections are a lot less cute. Fortunately, scientists may have figured out how to safely knock out at least one deadly fungal disease. The researchers published their findings in the Journal of Zoo and Wildlife Medicine. Fungi in the genus Aspergillus have all kinds of strange talents. They turn up in the pantry as black mold—and in the refrigerator, as key ingredients in soy sauce and lemon-flavored drinks. Some enzymes derived from these fungi can help people with celiac disease digest gluten. But others can also make people and other animals, including penguins, very, very sick. Avian aspergillosis can lead to chronic and acute respiratory infections. The disease strikes wild and captive birds all over the world, but is especially common among African penguins in zoos, refuges, research centers, and aquaria. For a while, those penguins were treated with a medication called vitraconazole. Then the fungus evolved a resistance. There's another option: a second drug called voriconazole, which has been used successfully to cure aspergillosis in other birds. But penguins aren't other birds. They've got their own peculiar bodies and metabolisms. A dose that's good for the goose may be too much for the penguin. To determine how much voriconazole a penguin should take, researchers enlisted 18 penguins at a New Jersey aquarium in two separate trials. They tried the birds on various dosing schedules and quantities, then tested their blood plasma to see how their bodies absorbed the drug. The scientists then took all that information and fed it into a computer model, which allowed them to calculate how quickly and efficiently the average African penguin could metabolize the medication. They arrived at a concentration of 5 milligrams per kilogram of penguin body weight, once a day. Lead author Katharine Stott is an expert in translational medicine at the University of Liverpool. "Although this project was a somewhat unusual one for our group," she said in a statement, "the problem it presents is common: how can we better understand dosing strategies to optimize the use of antimicrobial agents?" Stott noted that her group's methods could carry over into other small patients as well: "The project also dealt with an issue commonly faced when trying to design pediatric treatment regimens in that dosing requirements are not always proportionally related to patient size."

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios