Andreas Trepte via Wikimedia Commons // CC BY-SA 2.5
Andreas Trepte via Wikimedia Commons // CC BY-SA 2.5

Scientists Say Bird Poop Helps Cool the Arctic

Andreas Trepte via Wikimedia Commons // CC BY-SA 2.5
Andreas Trepte via Wikimedia Commons // CC BY-SA 2.5

You just never know how your contributions will change the world. In the case of Arctic birds, those contributions are drippy and white. Poop. We’re talking about poop. A recent study found that gases produced by huge quantities of seabird guano can increase cloud cover, thereby slightly reducing air temperature. The study results were published in the journal Nature Communications.

Climate change is a serious issue all over the globe, but it’s especially pronounced at the poles, where glaciers are vanishing and ecosystems are shifting at a dramatic rate. Understanding the many factors effecting these changes is essential if we want to protect our planet. Some factors, like a damaged ozone layer, are fairly obvious. Others are a little stealthier.

Take those bird droppings, for example. The Arctic is home to dozens of bird species and millions of birds, and they’ve all got to poop somewhere. Their runny poop—actually a combination of urine and feces—dribbles down the walls of their cliffside dwellings, accumulating in puddles and streaks.

Animals have excretory systems in order to get rid of materials they don’t need. We simply push them out of our bodies into the world around us. But the story doesn’t end there. The contents of our waste alter the environment they enter, often imperceptibly. The uric acid in bird poop, for example, releases ammonia (NH3) into the air.

A few years ago, researchers decided to find out exactly how much NH3 those birds’ butts were making. They conducted a global survey of 261 million breeding pairs of seabirds, then built a database listing the birds’ location and ammonia output.

Now, a team of climate and biology researchers from universities in Canada and the U.S. have put the excellent database to a very specific use. They were interested in figuring out if Arctic seabirds in particular were making enough NH3 to affect local weather. To find out, they pulled information on the birds’ productivity, then fed that information into a model that simulated the movement and transformation of ammonia particles in Arctic air.

They found that molecules of the birds’ ammonia could influence the growth of new particles, which could then expand and expand until they created new clouds. The clouds, in turn, could reduce the temperature above the bird colonies. Not by a lot, mind you; we’re talking about teeny, tiny changes. But we’re also talking about millions of birds in a swiftly shifting environment.

The results highlight just how linked we are to our planet, the authors write. Even as our lives and bodies are touched by the heat and air, we are touching back.

nextArticle.image_alt|e
iStock
Whale Sharks Can Live for More Than a Century, Study Finds
iStock
iStock

Some whale sharks alive today have been swimming around since the Gilded Age. The animals—the largest fish in the ocean—can live as long as 130 years, according to a new study in the journal Marine and Freshwater Research. To give you an idea of how long that is, in 1888, Grover Cleveland was finishing up his first presidential term, Thomas Edison had just started selling his first light bulbs, and the U.S. only had 38 states.

To determine whale sharks' longevity, researchers from the Nova Southeastern University in Florida and the Maldives Whale Shark Research Program tracked male sharks around South Ari Atoll in the Maldives over the course of 10 years, calculating their sizes as they came back to the area over and over again. The scientists identified sharks that returned to the atoll every few years by their distinctive spot patterns, estimating their body lengths with lasers, tape, and visually to try to get the most accurate idea of their sizes.

Using these measurements and data on whale shark growth patterns, the researchers were able to determine that male whale sharks tend to reach maturity around 25 years old and live until they’re about 130 years old. During those decades, they reach an average length of 61.7 feet—about as long as a bowling lane.

While whale sharks are known as gentle giants, they’re difficult to study, and scientists still don’t know a ton about them. They’re considered endangered, making any information we can gather about them important. And this is the first time scientists have been able to accurately measure live, swimming whale sharks.

“Up to now, such aging and growth research has required obtaining vertebrae from dead whale sharks and counting growth rings, analogous to counting tree rings, to determine age,” first author Cameron Perry said in a press statement. ”Our work shows that we can obtain age and growth information without relying on dead sharks captured in fisheries. That is a big deal.”

Though whale sharks appear to be quite long-lived, their lifespan is short compared to the Greenland shark's—in 2016, researchers reported they may live for 400 years. 

nextArticle.image_alt|e
iStock
Animal Welfare Groups Are Building a Database of Every Cat in Washington, D.C.
iStock
iStock

There are a lot of cats in Washington, D.C. They live in parks, backyards, side streets, and people's homes. Exactly how many there are is the question a new conservation project wants to answer. DC Cat Count, a collaboration between Humane Rescue Alliance, the Humane Society, PetSmart Charities, and the Smithsonian Conservation Biology Institute, aims to tally every cat in the city—even house pets, The New York Times reports.

Cities tend to support thriving feral cat populations, and that's a problem for animal conservationists. If a feline is born and grows up without human contact, it will never be a suitable house cat. The only options animal control officials have are to euthanize strays or trap and sterilize them, and release them back where they were found. If neither action is taken, it's the smaller animals that belong in the wild who suffer. Cats are invasive predators, and each year they kill billions of birds in the U.S. alone.

Before animal welfare experts and wildlife scientists can tackle this problem, they need to understand how big it is. Over the next three years, DC Cat Count will use various methods to track D.C.'s cats and build a feline database for the city. Sixty outdoor camera traps will capture images of passing cats, relying on infrared technology to sense them most of the time.

Citizens are being asked to help as well. An app is currently being developed that will allow users to snap photos of any cats they see, including their own pets. The team also plans to study the different ways these cats interact with their environments, like how much time pets spend indoors versus outdoors, for example. The initiative has a $1.5 million budget to spend on collecting data.

By the end of the project, the team hopes to have the tools both conservationists and animal welfare groups need to better control the local cat population.

Lisa LaFontaine, president and CEO of the Humane Rescue Alliance, said in a statement, “The reality is that those in the fields of welfare, ecology, conservation, and sheltering have a common long-term goal of fewer free-roaming cats on the landscape. This joint effort will provide scientific management programs to help achieve that goal, locally and nationally."

[h/t The New York Times]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios