Look Up Tonight! The Super Beaver Moon Is Here

Have you heard about the supermoon tonight? Have you heard that it’s going to be big? Huge! Terrifying! The last time a full moon appeared this large, they say, the astronaut corps consisted of a single monkey named Albert, who would soon be shot into space on a V2 rocket. (Things did not end well for Albert, nor for his successor, Albert II.) It hasn’t seemed this big since 1948! What celestial chaos can we expect?

Take a deep breath. Technically, the supermoon’s peak will occur tomorrow morning, November 14, at 8:52 a.m. EST. But we think you should go out tonight (and maybe tomorrow night too). It’s going to be a pretty big full moon, and yes, it will likely be the biggest you’ve ever seen (and will not see again until November 25, 2034), but “biggest” is a relative term. If you didn’t already know that this supermoon would be juicing, you probably wouldn’t have really noticed. So what’s going on up there?


Relative to the Earth, the Moon is really big. Only gas giants Saturn and Jupiter possess larger moons, though it seems more through attrition than anything else. They’re working with overwhelmingly superior planetary sizes and moon totals, in comparison to our pale blue dot. Jupiter’s diameter is 11 times that of the Earth; Saturn’s diameter, 9.5 times. The two colossal planets have in their orbits a total of 129 known moons—and yet all but four of them are smaller than the lone Moon of our little world (our newly discovered mini-moon–like asteroid excluded).

If our moon is unique, its orbit is even wackier. Some might call it downright weird. The Moon's orbit is really far from Earth, and the tilt of its orbit is large to the point of being inexplicable. Scientists are pretty certain that a massive collision between the Earth and another planet sent debris into space that would eventually coalesce to form the Moon. Existing models for this, however, have never adequately been able to account for the moon’s large tilt.

One recent hypothesis for the Moon’s odd behavior states that the “Big Whack” changed our axial tilt by as much as 80 degrees and sent us spinning incredibly fast. That initial high tilt―the Earth might once have spun on its side―would explain how we managed eventually to slow back down. According to the same model, the Moon’s orbit of the Earth on the outset was 15 times closer than it is today, and that as it migrated away from the Earth, the Sun began to exert influence on its orbit. The whack, the tilt, the speed, the Sun―taken together, they offer a compelling explanation for the Moon’s odd orbital tilt today.


Because the Moon’s orbit is elliptical, when it is closest to the Earth in a revolution―a.k.a. at perigee―it appears larger; when it is at apogee, or farthest away, it appears smaller. Perigee and apogee are not identical from orbit to orbit. The Earth and the Moon both fall under the gravitational influence of the Sun.

When perigee coincides with a full moon, you get what is colloquially called a “supermoon.” (Not an astronomy term.) The full moon in November is called the Beaver Moon. (Also not an astronomy term.) Long ago, this was considered the time to set your beaver traps so that you would have enough pelts to make winterwear. Because tonight’s perigee brings the surfaces of the Earth and the moon a scant 216,486 miles apart, the supermoon will appear up to 14 percent bigger. But unless you’re a devoted Moon watcher, you might have a hard time spotting that. The moon will also be 30 percent brighter, NASA says, because of the Earth’s proximity in its orbit from the Sun. In all, it’s going to be a gorgeous super beaver moon, but it won’t change your life. Set your expectations accordingly.

So hope for clear skies, go outside―maybe even dust off the telescope, uncork a bottle of wine, and make an evening of it―and enjoy the Moon for the same reason you enjoy the constellations, meteor showers, the movement of the planets, and the appearance of the International Space Station. (If it's cloudy, check out the livestream from Slooh.) Because space isn’t somewhere out there. Earth is as much “in space” as any other object in the universe. We are part of space. And to peer into the night sky is to look simultaneously at the distant past of the universe, and the near future of humankind.

Original image
iStock // Ekaterina Minaeva
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
One Bite From This Tick Can Make You Allergic to Meat
Original image

We like to believe that there’s no such thing as a bad organism, that every creature must have its place in the world. But ticks are really making that difficult. As if Lyme disease wasn't bad enough, scientists say some ticks carry a pathogen that causes a sudden and dangerous allergy to meat. Yes, meat.

The Lone Star tick (Amblyomma americanum) mostly looks like your average tick, with a tiny head and a big fat behind, except the adult female has a Texas-shaped spot on its back—thus the name.

Unlike other American ticks, the Lone Star feeds on humans at every stage of its life cycle. Even the larvae want our blood. You can’t get Lyme disease from the Lone Star tick, but you can get something even more mysterious: the inability to safely consume a bacon cheeseburger.

"The weird thing about [this reaction] is it can occur within three to 10 or 12 hours, so patients have no idea what prompted their allergic reactions," allergist Ronald Saff, of the Florida State University College of Medicine, told Business Insider.

What prompted them was STARI, or southern tick-associated rash illness. People with STARI may develop a circular rash like the one commonly seen in Lyme disease. They may feel achy, fatigued, and fevered. And their next meal could make them very, very sick.

Saff now sees at least one patient per week with STARI and a sensitivity to galactose-alpha-1, 3-galactose—more commonly known as alpha-gal—a sugar molecule found in mammal tissue like pork, beef, and lamb. Several hours after eating, patients’ immune systems overreact to alpha-gal, with symptoms ranging from an itchy rash to throat swelling.

Even worse, the more times a person is bitten, the more likely it becomes that they will develop this dangerous allergy.

The tick’s range currently covers the southern, eastern, and south-central U.S., but even that is changing. "We expect with warming temperatures, the tick is going to slowly make its way northward and westward and cause more problems than they're already causing," Saff said. We've already seen that occur with the deer ticks that cause Lyme disease, and 2017 is projected to be an especially bad year.

There’s so much we don’t understand about alpha-gal sensitivity. Scientists don’t know why it happens, how to treat it, or if it's permanent. All they can do is advise us to be vigilant and follow basic tick-avoidance practices.

[h/t Business Insider]