CLOSE
iStock
iStock

How Acne Bacteria Messes With Your Skin

iStock
iStock

Some of the most powerful human experiences are universal. Love. Heartbreak. Elation. Hating acne. The microscopic jerk known as Propionibacterium acnes wreaks havoc on our skin, makes middle school harder, and can cause pain and scarring. Now scientists say we’re one step closer to understanding what makes acne so devious—and how we might conquer it. They published their findings in the journal Science Immunology.

Acne breakouts are the result of a perfect storm of disgusting conditions near the surface of your skin. Natural oils and dead cells build up around your hair follicles, creating the ideal environment for bacteria to breed. The resulting infection sets off your immune system, which leads to inflammation, redness, and those oh-so-delightful pustules on your face, neck, chest, back, or shoulders.

We knew all this already. What we didn’t know was how P. acnes, which ordinarily lives harmlessly on the skin, could multiply out of control—or how its little fortresses in your follicles send your immune system into such a panic.

Previous studies on the bacteria in the human gut have found that certain bacteria produce chemicals called short-chain fatty acids (SCFAs). These acids then block the action of an immune compound called histone deacetylase (HDAC). Suppressed HDAC can then lead to immune trouble and, from there, inflammation.

Dermatology and biochemists at the University of California, San Diego were curious to see if the same patterns would play out on and inside our skin. First, they simulated the greasy skin experience by culturing acne bacteria in Petri dishes full of blood cells or oil-producing skin cells. They ensured that the environment in the dish was smothering, starved of oxygen like the inside of a clogged follicle. Then they let it fester.

Once they had a good SCFA stew going, they ran the cultures through an RNA sequencer to see how the bacteria and cells were performing. They also applied SCFAs both on and just under the skin of lab mice to see how skin layers might react.

The team found that, as with gut cells, the skin cells could be goaded into inflammation by acne’s SCFA bullies. The same pattern bore out for the mice—but only on the topmost layer of keratinocytes, the most common type of epidermal cells. Exposing lower skin layers to acne and SCFA actually activated those cells’ immune systems, making it easier for them to fight off infection.

Adam Friedman teaches and researches dermatology at the George Washington University School of Medicine. He was unaffiliated with the study but praised the findings, telling mental_floss that they “unveil a new understanding of how P. acnes contributes to the pathogenesis of acne, but also give us more insight (and also much more work to do) with respect to the way the bacteria on our skin can change how skin works at the genetic level.”

The research goes well beyond skin problems, he says, and has “huge implications for microbiome research,” because it highlights how “our many tiny friends who live on our skin have the ability to modify how we work, which has broader implications for other inflammatory diseases.”
 
Know of something you think we should cover? Email us at tips@mentalfloss.com.

nextArticle.image_alt|e
iStock
arrow
Medicine
New Cancer-Fighting Nanobots Can Track Down Tumors and Cut Off Their Blood Supply
iStock
iStock

Scientists have developed a new way to cut off the blood flow to cancerous tumors, causing them to eventually shrivel up and die. As Business Insider reports, the new treatment uses a design inspired by origami to infiltrate crucial blood vessels while leaving the rest of the body unharmed.

A team of molecular chemists from Arizona State University and the Chinese Academy of Sciences describe their method in the journal Nature Biotechnology. First, they constructed robots that are 1000 times smaller than a human hair from strands of DNA. These tiny devices contain enzymes called thrombin that encourage blood clotting, and they're rolled up tightly enough to keep the substance contained.

Next, researchers injected the robots into the bloodstreams of mice and small pigs sick with different types of cancer. The DNA sought the tumor in the body while leaving healthy cells alone. The robot knew when it reached the tumor and responded by unfurling and releasing the thrombin into the blood vessel that fed it. A clot started to form, eventually blocking off the tumor's blood supply and causing the cancerous tissues to die.

The treatment has been tested on dozen of animals with breast, lung, skin, and ovarian cancers. In mice, the average life expectancy doubled, and in three of the skin cancer cases tumors regressed completely.

Researchers are optimistic about the therapy's effectiveness on cancers throughout the body. There's not much variation between the blood vessels that supply tumors, whether they're in an ovary in or a prostate. So if triggering a blood clot causes one type of tumor to waste away, the same method holds promise for other cancers.

But before the scientists think too far ahead, they'll need to test the treatments on human patients. Nanobots have been an appealing cancer-fighting option to researchers for years. If effective, the machines can target cancer at the microscopic level without causing harm to healthy cells. But if something goes wrong, the bots could end up attacking the wrong tissue and leave the patient worse off. Study co-author Hao Yan believes this latest method may be the one that gets it right. He said in a statement, "I think we are much closer to real, practical medical applications of the technology."

[h/t Business Insider]

nextArticle.image_alt|e
iStock
arrow
Medicine
New Peanut Allergy Patch Could Be Coming to Pharmacies This Year
iStock
iStock

About 6 million people in the U.S. and Europe have severe peanut allergies, including more than 2 million children. Now, French biotechnology company DBV Technologies SA has secured an FDA review for its peanut allergy patch, Bloomberg reports.

If approved, the company aims to start selling the Viaskin patch to children afflicted with peanut allergies in the second half of 2018. The FDA's decision comes in spite of the patch's disappointing study results last year, which found the product to be less effective than DBV hoped (though it did receive high marks for safety). The FDA has also granted Viaskin breakthrough-therapy and fast-track designations, which means a faster review process.

DBV's potentially life-saving product is a small disc that is placed on the arm or between the shoulder blades. It works like a vaccine, exposing the wearer's immune system to micro-doses of peanut protein to increase tolerance. It's intended to reduce the chances of having a severe allergic reaction to accidental exposure.

The patch might have competition: Aimmune Therapeutics Inc., which specializes in food allergy treatments, and the drug company Regeneron Pharmaceuticals Inc. are working together to develop a cure for peanut allergies.

[h/t Bloomberg]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios