Why Yellow Woodpeckers Are Turning Red

This yellow-shafted flicker looks a bit pinkish in this photo by the USGS's Scott Somershoe via Wikimedia Commons // Public Domain

Northern flicker woodpeckers come in two color schemes, depending on where they’re from. Although all the birds are brown and black on top, the subspecies that lives in western North America—the red-shafted flicker—has red feathers on the underside of its wings and tail. Its cousin from the eastern side of the continent, the yellow-shafted flicker, has—you guessed it—yellow feathers in those spots. Seems simple enough, but scientists estimate that nearly one-third of yellow-shafted flickers also have orange or red feathers, and odd-colored woodpeckers are found far east of where the two subspecies overlap, potentially producing hybrids. More and more flickers are red where they shouldn’t be, in more ways than one.

A team of researchers has a new explanation for this color shift: Invasive plants are altering the woodpeckers’ palate—and, as a result, their palette. In short, they're eating things that are changing their colors.

Previously, some scientists had speculated that there was a factor selecting for red feathers, pushing the yellow-shafted flickers to evolve to look more like the red-shafted ones. Others suggested that the flickers were genetically capable of developing either color, and sometimes birds just grew feathers in the wrong shade.

But ornithologist Jocelyn Hudon, of the Royal Alberta Museum in Ontario, thought something else was responsible. A miscolored bird’s feathers, he noticed, can differ in shade from one year to the next. Other east coast birds that normally have yellow feathers—like cedar waxwings and Baltimore orioles—also sometimes have orange or red feathers. Maybe, Hudon, thought, something the birds were eating was causing these color changes. That's how flamingos get their color.

To find out, Hudon and his colleagues analyzed the "aberrant" feathers on a few yellow-shafted flickers they captured in Massachusetts and Pennsylvania, and compared them to museum specimens of yellow-shafted, red-shafted, and hybrid flickers collected across Canada. As they explain in an upcoming paper in the journal The Auk: Ornithological Advances, they found that the yellow-shafted flickers’ red feathers weren’t colored by the same carotenoid pigments responsible for the colors of red-shafted flickers, but by a pigment called rhodoxanthin.

Data from birders that had banded and tracked hundreds of flickers over the last 30 years told the scientists that the birds acquire the red pigment and shift colors during their fall molt in August and September, a time of year that the flickers mix fruit into their ant-based diet. That led Hudon to the likeliest source of the rhodoxanthin: Tatarian and Morrow’s honeysuckles, a pair of invasive plants native to Central Asia that produce abundant berries loaded with rhodoxanthin right around the time of the flickers’ molt.

The berry theory would explain why the red yellow-shafted flickers don’t display any traits of red-shafted flickers beyond feather color (there’s no hybridization); why many yellow-shafted flickers have both red and yellow feathers (the rhodoxanthin only affects feather growth after berries are eaten); and finally, why the red color appears abruptly and can differ or disappear (as rhodoxanthin is cleared from a bird’s system, the color fades). The feather color is affected by when the berries are ingested and how many are eaten.

Hudon’s team thinks that rhodoxanthin may cause color changes in other birds too—and have consequences on their love lives. While yellow-shafted and red-shafted flickers frequently mate with each other and pay no mind to color, many other species use feather color to identify and assess potential mates. For these birds, a meal that changes their hue could lead to problems finding a partner. Though their feathers might be red, they could be left feeling blue.

Watch How a Bioluminescence Expert Catches a Giant Squid

Giant squid have been the object of fascination for millennia; they may have even provided the origin for the legendary Nordic sea monsters known as the Kraken. But no one had captured them in their natural environment on video until 2012, when marine biologist and bioluminescence expert Edith Widder snagged the first-ever images off Japan's Ogasawara Islands [PDF]. Widder figured out that previous dives—which tended to bring down a ton of gear and bright lights—were scaring all the creatures away. (Slate compares it to "the equivalent of coming into a darkened theater and shining a spotlight at the audience.")

In this clip from BBC Earth Unplugged, Widder explains how the innovative camera-and-lure combo she devised, known as the Eye-in-the-Sea, finally accomplished the job by using red lights (which most deep-sea creatures can't see) and an electronic jellyfish (called the e-jelly) with a flashy light show just right to lure in predators like Architeuthis dux. "I've tried a bunch of different things over the years to try to be able to talk to the animals," Widder says in the video, "and with the e-jelly, I feel like I'm finally making some progress."

[h/t The Kid Should See This]

Big Questions
Why Are There No Snakes in Ireland?

Legend tells of St. Patrick using the power of his faith to drive all of Ireland’s snakes into the sea. It’s an impressive image, but there’s no way it could have happened.

There never were any snakes in Ireland, partly for the same reason that there are no snakes in Hawaii, Iceland, New Zealand, Greenland, or Antarctica: the Emerald Isle is, well, an island.

Eightofnine via Wikimedia Commons // Public Domain

Once upon a time, Ireland was connected to a larger landmass. But that time was an ice age that kept the land far too chilly for cold-blooded reptiles. As the ice age ended around 10,000 years ago, glaciers melted, pouring even more cold water into the now-impassable expanse between Ireland and its neighbors.

Other animals, like wild boars, lynx, and brown bears, managed to make it across—as did a single reptile: the common lizard. Snakes, however, missed their chance.

The country’s serpent-free reputation has, somewhat perversely, turned snake ownership into a status symbol. There have been numerous reports of large pet snakes escaping or being released. As of yet, no species has managed to take hold in the wild—a small miracle in itself.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at


More from mental floss studios