Parker et al (2016)
Parker et al (2016)

What Long-Dead Bees Can Tell Us About Our Ancestors

Parker et al (2016)
Parker et al (2016)

To the dedicated detective, everything looks like a clue. Take this approximately 3-million-year-old bees’ nest, for example: Researchers say its very presence speaks volumes about the world in which our early ancestors lived. They published their report today, September 28, in the journal PLOS One.

The ancestor in question is Australopithecus africanus, a small hominid species with both human- and ape-like features that lived in modern-day South Africa. Au. africanus was little to begin with—adult males averaged around 4’6”, females 3’9”—but the first specimen ever found was littler yet. The Taung child, as it came to be known, was first unearthed in 1924, and represented the earliest human ancestor ever found in Africa. Archaeologists found a few more Au. africanus individuals over the next decade, and then the wellspring of remains dried up. We haven’t found any more Australopithecus there since.

But the absence of bodies isn’t the same thing as a dead end. Researchers have simply turned their attention to exploring the world of Australopithecus in other ways: namely, looking at the site itself, at its geology, environment, and all the other fossils found there.

When we think about fossils, we typically think about the remains of plants and animals. But the traces left behind by these organisms can become fossils too. These footprints, burrows, and nests are harder to pin down to a single species, so scientists classify them into groups called ichnogenera.

Fossilized burrows in the ichnogenus Celliforma were most likely made by prehistoric bees. Unlike the humming, social hives of honeybees, each flask-shaped Celliforma nest was dug out of the ground and occupied by a single bee.

These nests are somewhat rare, and they’ve never been seen before in Africa, so researchers were understandably pretty psyched when they found one in Au. africanus territory near the edge of the Kalahari desert.

The nest was in great shape, given its age. The outside was covered with 25 small chambers, each of which would have housed a baby bee millions of years ago. Computed tomography (CT) scans of the entire nest revealed a complex system of tunnels and cells within, as well as traces of tiny plant parts that would have once lined its walls.

Parker et al. (2016)

The researchers say the nest’s overall structure is most similar to the homes of modern carder bees, which glaze the interior of their nests with a thin layer of clay, smooth it out with a wax-like substance, then add pieces of plants.

The nest’s structure and contents suggest that it was built in light, dry soil—findings that support previous studies, which hypothesized that Au. africanus may have lived in an arid, savannah-like environment.

"Insect traces are rarely considered in detail," the study authors conclude, "yet they could offer important palaeoenvironmental insights, with the potential to reveal valuable information about hominin palaeoecology."

Know of something you think we should cover? Email us at

Oakley Originals, Flickr Creative Commons // CC BY 2.0
Could Imported Sperm Help Save America’s Bees?
Oakley Originals, Flickr Creative Commons // CC BY 2.0
Oakley Originals, Flickr Creative Commons // CC BY 2.0

It might be time to call in some sexual backup for male American bees. Scientists have started impregnating domestic honeybees with foreign sperm in the hopes that enlarging the gene pool will give our bees a fighting chance.

These days, the bees need all the help they can get. Colonies across the globe are disappearing and dying off, partly due to the increased use of neonicotinoid pesticides and partly from a parasite called the varroa mite. The invasive mite first landed on American shores in 1987, and it's been spreading and sickening and devouring our bees ever since.

Part of the problem, researchers say, is that the American bee gene pool has gone stagnant. We stopped importing live honeybees in 1922, which means that all the bees we've got are inbred and, therefore, all alike. They lack the genetic diversity that allows species to adapt to changing conditions or new threats. So when the mites come, they all get hit.

Many apiarists now rely on anti-mite pesticides to keep their charges safe. While these treatments may help keep the mites away, they aren't great for the bees, either—and the mites have begun to develop a resistance. But beekeepers feel like their hands are tied.

"I lost 40 percent of my colonies to varroa last fall," Matthew Shakespear of Olson's Honeybees told NPR. "I'm not taking any more chances. We've already done five treatments, compared with the two treatments we applied this time last year."

But there might be another way. Experts at the University of Washington have started to—how can we put this delicately?—manually encourage drones (male bees) in Europe and Asia to give up their sperm. All it takes is a little belly rub, and the drone, er, donates 1 microliter of fluid, or one-tenth of the amount needed to inseminate a queen bee.

"They're really accommodating," bee breeder and researcher Susan Cobey told NPR. 

It's hardly a painless procedure, but researcher Brandon Hopkins told Mental Floss it's no worse than sex in the wild. "In natural mating he uses pressure from muscles and hemolymph to evert [his genitals], (inflating it and forcing it to pop out)," Hopkins wrote in an email. "In the lab we apply pressure to the head and thorax to create similar pressure to cause the eversion. In both cases (naturally and artificially) the male dies from the process of mating."

So far, the scientists' attempts to crossbreed foreign and domestic bees have been successful. Within their test colonies, genetic diversity is up.

"This doesn't mean they are superior in performance to the other bees," Hopkins told NPR. "It means we have a better chance of finding rare and unique traits." Traits, Hopkins says, like genetic resistance to the varroa mites—a quality shared by donor bees in Italy, Slovenia, Germany, Kazakhstan, and the Republic of Georgia.

Other beekeepers are opting for a more hands-off approach, introducing imported queens to their domestic hives. Shakespear bought his from Cobey, who reared them from bees she collected in Slovenia.

"Maybe these new genetics can deal with the varroa mites naturally," Shakespear said, "rather than having to rely on chemicals. It's time to start widening our gene pool."

[h/t The Salt]

Study Finds Pesticide Makes It Hard for Bees to Fly on Target

Scientists say a widely used pesticide can affect honeybees’ ability to fly, making it harder for foraging bees to find their way home. They published their findings in the journal Scientific Reports.

Bee populations worldwide are currently facing a mountain of threats and difficulties. Parasites, habitat loss, and even antibiotics have all been implicated in the bees’ decline, but it may be pesticide that’s doing the most damage.

Foraging honeybees (Apis mellifera) regularly take in small amounts of chemicals like thiamethoxam, a neonicotinoid pesticide that’s regularly sprayed on monoculture crops like cotton, soybeans, and corn. A little dose won’t kill the bees, and it won’t keep them from coming back to consume more the next day. Over time, that chronic exposure can mess them up.

Biologists at the University of California San Diego’s Nieh Lab wanted to know if and how thiamethoxam could affect bees’ ability to fly. They exposed honeybees to low doses of the pesticide for two days, then strapped each one into this unusual contraption—the bee version of a treadmill.

At first, the pesticide almost seemed like it was doing the bees a favor. Thiamethoxam-exposed bees initially flew much farther and faster than bees who’d never been near the chemical.

The problem is that they weren’t flying anywhere in particular. They seemed disoriented and soon wore themselves out in their mad, flailing dash to get where they wanted to go. On the treadmill, this panic-type flying didn’t do them any harm, but in the wild, these erratic, exhausting flight patterns could keep the bees from ever getting home.

To make matters worse, given a choice, the bees almost always opted to consume pesticide, and they ate more when their food had been laced with the stuff.

"The honey bee is a highly social organism, so the behavior of thousands of bees are essential for the survival of the colony," co-author James Nieh said in a statement. "We've shown that a sub-lethal dose may lead to a lethal effect on the entire colony."

Header image by Luc Viatour via Wikimedia Creative Commons // CC BY-SA 3.0


More from mental floss studios