CLOSE
Original image
Tanaka S, Sagara H, Kunieda.

Water Bears’ DNA Makes Them Practically Indestructible

Original image
Tanaka S, Sagara H, Kunieda.

Burn it. Freeze it. Chuck it into space. Water bear don’t care. The water bear, also known as the tardigrade or moss piglet, is one of the weirdest and toughest creatures on the planet. Now new research published in the journal Nature Communications suggests we might someday be able to borrow its resilience to use in our own flimsy, floppy bodies.

Tardigrades are extremophiles—that is, they can keep trucking in unbelievably hostile environments, from scorching deserts to the vacuum of space. This astonishing near-indestructibility has, understandably, made them especially appealing to scientists, who have been working for years to pick apart the genetic basis of the microscopic creatures’ badassery. But the more we learn about these creatures, the weirder they seem to get.

In 2015, a group of researchers reported one possible source of the tardigrade’s toughness: burglary. While looking at the genome of the tardigrade species Hypsibius dujardini, the team said they found all kinds of genes that belonged to other organisms, including fungi and bacteria. Horizontal gene transfer (when one organism swipes genes from another) is not unheard of, but H. dujardini appeared to have taken it to the next level, with a full 17 percent of its genes yoinked from other species.

Even for the moss piglet, this seemed kind of, well, extreme. When other scientists tried to replicate the original team’s results, they found only tiny amounts of horizontal gene transfer—about 1 or 2 percent. They said the original team’s samples had likely been contaminated. #tardigate ensued. The tardigrade remained a tiny, scrappy enigma.

Scientists kept at it. The latest research, published today, may have cracked some of the mystery. Researchers in Japan examined the genome of an especially hardy water bear named Ramazzottius varieornatus. In comparing the tardigrade’s genetic codes with those of worms and flies, they found way more genes related to surviving stressful conditions.

In the video below, by researcher Daiki D. Horikawa, you can see R. varieornatus encounter one stressful condition: a lack of water. The tardigrade dries out and shrinks up, seemingly dead. But it isn't. Given a drop of water, it plumps right up, stretches its little legs, and begins to move around.

Then the team took the study to the next level. They found a resilience-boosting protein they called Damage suppressor (Dsup) that appears to be completely unique to tardigrades. Then they inserted Dsup into human cells, which then became more resistant to damage from x-ray radiation.

There’s a lot here to get excited about, says Sujai Kumar, a genome informatician at the University of Edinburgh and a co-author on the #tardigate-triggering study. “The Japanese team's genome sequencing methodology is exemplary,” he tells mental_floss. The depth and breadth of their investigation have yielded a huge quantity of information that will continue to help other researchers unravel the tardigrade mystery.

Even better, Kumar says, were the Japanese researchers’ “really cool” studies in human cells. “Although not quite at the level of a superheroine origin story,” he says, “this is a great example of a gene from an extremotolerant species conferring a 'super power' to a human cell, and is an exciting finding.”

Know of something you think we should cover? Email us at tips@mentalfloss.com.

Original image
iStock
arrow
Animals
Australian Charity Releases Album of Cat-Themed Ballads to Promote Feline Welfare
Original image
iStock

An Australian animal charity is helping save the nation’s kitties one torch song at a time, releasing a feline-focused musical album that educates pet owners about how to properly care for their cats.

Around 35,000 cats end up in pounds, shelters, and rescue programs every year in the Australian state of New South Wales, according to the Royal Society for the Prevention of Cruelty to Animals (RSPCA). Microchipping and fixing cats, along with keeping closer tabs on them, could help reduce this number. To get this message out, the RSPCA’s New South Wales chapter created Cat Ballads: Music To Improve The Lives Of Cats.

The five-track recording is campy and fur-filled, with titles like "Desex Me Before I Do Something Crazy" and "Meow Meow." But songs like “I Need You” might tug the heartstrings of ailurophiles with lyrics like “I guess that’s goodbye then/but you’ve done this before/the window's wide open/and so’s the back door/you might think I’m independent/but you’d be wrong.” There's also a special version of the song that's specifically designed for cats’ ears, featuring purring, bird tweets, and other feline-friendly noises.

Together, the tunes remind us how vulnerable our kitties really are, and provide a timely reminder for cat owners to be responsible parents to their furry friends.

“The Cat Ballads campaign coincides with kitten season, which is when our shelters receive a significantly higher number of unwanted kittens as the seasons change,” Dr. Jade Norris, a veterinary scientist with the RSPCA, tells Mental Floss. “Desexing cats is a critical strategy to reduce unwanted kittens.”

Listen to a song from Cat Ballads below, and visit the project’s website for the full rundown.

Original image
Sylke Rohrlach, Wikimedia Commons // CC BY-SA 4.0
arrow
Animals
Scientists Discover 'Octlantis,' a Bustling Octopus City
Original image
Sylke Rohrlach, Wikimedia Commons // CC BY-SA 4.0

Octopuses are insanely talented: They’ve been observed building forts, playing games, and even walking on dry land. But one area where the cephalopods come up short is in the social department. At least that’s what marine biologists used to believe. Now a newly discovered underwater community, dubbed Octlantis, is prompting scientists to call their characterization of octopuses as loners into question.

As Quartz reports, the so-called octopus city is located in Jervis Bay off Australia’s east coast. The patch of seafloor is populated by as many as 15 gloomy octopuses, a.k.a. common Sydney octopuses (octopus tetricus). Previous observations of the creatures led scientists to think they were strictly solitary, not counting their yearly mating rituals. But in Octlantis, octopuses communicate by changing colors, evict each other from dens, and live side by side. In addition to interacting with their neighbors, the gloomy octopuses have helped build the infrastructure of the city itself. On top of the rock formation they call home, they’ve stored mounds of clam and scallop shells and shaped them into shelters.

There is one other known gloomy octopus community similar to this one, and it may help scientists understand how and why they form. The original site, called Octopolis, was discovered in the same bay in 2009. Unlike Octlantis, Octopolis was centered around a manmade object that had sunk to the seabed and provided dens for up to 16 octopuses at a time. The researchers studying it had assumed it was a freak occurrence. But this new city, built around a natural habitat, shows that gloomy octopuses in the area may be evolving to be more social.

If that's the case, it's unclear why such octo-cities are so uncommon. "Relative to the more typical solitary life, the costs and benefits of living in aggregations and investing in interactions remain to be documented," the researchers who discovered the group wrote in a paper published in Marine and Freshwater Behavior and Physiology [PDF].

It’s also possible that for the first time in history humans have the resources to see octopus villages that perhaps have always been bustling beneath the sea surface.

[h/t Quartz]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios