CLOSE
Rough Retouch, via Wikimedia Commons // CC BY-SA 2.0
Rough Retouch, via Wikimedia Commons // CC BY-SA 2.0

15 Overlooked Facts about Rosalind Franklin

Rough Retouch, via Wikimedia Commons // CC BY-SA 2.0
Rough Retouch, via Wikimedia Commons // CC BY-SA 2.0

English chemist Rosalind Franklin was a brilliant and dedicated scientist, but unfortunately, she is best known for the honor denied her: the 1962 Nobel Prize for discovering the structure of DNA. Here are 15 facts about her.

1. SHE KNEW HER CALLING EARLY, BUT HER FATHER RESISTED EDUCATING A DAUGHTER.

Rosalind Elsie Franklin was born in London in 1920. She was one of five children born into a wealthy Jewish family. She decided she wanted to become a scientist at 15, and passed the admissions exam for Cambridge University. However, her father, Ellis, a merchant banker, objected to women going to college and refused to pay her tuition. Her aunt and mother finally managed to change his mind, and she enrolled at Cambridge's all-female Newnham College in 1938.

2. SHE ATTENDED COLLEGE WITH ANOTHER WOMAN WHO DIDN'T GET FULL CREDIT FOR HER WORK.

Bletchley Park cryptanalyst Joan Clarke was a few years older than Franklin, but they were both at Newnham in the late 1930s. Clarke would go on to be recruited for the war effort, cracking the German Enigma codes. The full scope of Clarke’s work is still unknown, due to government secrecy.

3. HER SCHOLASTIC ACHIEVEMENTS WERE DENIED BY HER UNIVERSITY FOR YEARS.

Newnham College, Cambridge
Azeira, Wikimedia Commons // Public Domain

Despite Newnham College having been at Cambridge since 1871, the university refused to accept women as full members until 1948, seven years after Franklin earned the title of a degree in chemistry. Oxford University started granting women’s degrees in 1920.

4. HER RESEARCH ON COAL HELPED THE AEROSPACE INDUSTRY.

After graduation, Franklin got a job at the British Coal Utilization Research Association (BCURA), where she researched coal and charcoal, and how it could be used for more than fuel. Her research formed the basis for her 1945 doctoral dissertation; it and several of her later papers on the micro-structures of carbon fibers played a role in the eventual use of carbon composites in air- and spacecraft construction.

5. HER MALE COLLEAGUES WERE HOSTILE AND UNDERMINED HER RESEARCH.

Franklin had a direct nature and was unwilling to be traditionally feminine. One reason she left Cambridge to work on coal was that her doctoral supervisor did not like her and believed women would always be less than men. When she was hired in 1951 at King’s College, London, to work on DNA, she clashed with researcher Maurice Wilkins, who had thought she was his assistant, not his equal. Meanwhile, Franklin was under the impression that she’d be completely independent. Their relationship got worse and worse the longer they worked together. Wilkins went so far as to share Franklin’s research without telling her with James Watson and Francis Crick—even though they were technically his competitors, funded by Cambridge University. Watson was particularly nasty about Franklin in his 1968 book, The Double Helix, criticizing her appearance and saying she had to be “put in her place.”

6. HOW EVENTS UNFOLDED IN THE DISCOVERY OF DNA'S STRUCTURE IS STILL DEBATED TODAY.

Double helix of DNA
Altayb, iStock

Many books have been written hashing over events, either criticizing Watson and Crick, saying they stole Franklin’s research, or defending the duo, saying her research helped them but that Franklin would not ultimately have reached their conclusions on her own. Though Franklin and Watson never became friendly, Crick and his wife welcomed Franklin into their home while she was being treated for ovarian cancer.

7. HER WORK MAY HAVE LED TO HER UNTIMELY DEATH.

Franklin died of cancer in 1958. She was 37. Though genetics likely played a part in her illness, her work with crystal x-ray diffraction, which involved constant exposure to radiation, did not help. She is not the first woman in science to risk her health for her research. Marie Curie died from aplastic anemia, which has been tied to radiation exposure. Many of Curie’s personal belongings, including her cookbooks, are too radioactive to handle even today.

8. HAD SHE LIVED LONGER, SHE MAY HAVE QUALIFIED FOR MORE THAN ONE NOBEL PRIZE.


Maurice Wilkins (on left), Francis Crick (third from left), and James Watson (fifth from left) accept their Nobel Prize in 1962.
Keystone, Getty Images

The first, of course, would have been awarded with Watson, Crick, and Wilkins, had they been made to share credit with her. (Pierre Curie had to ask the Nobel Committee to add his wife to the nomination in 1903.) As for the second, chemist Aaron Klug won the prize in 1982, carrying on work he and Franklin had started on viruses in 1953, after she left King’s College. Because of the rules at the time of her death about awarding prizes posthumously (and in 1974 all posthumous awards were eliminated, the sole exception being in 2011), Franklin has none.

9. DESPITE BEING DENIED HER PRIZE, SHE'S BEEN HONORED BY MANY ACADEMICS.

In 2004, the Chicago Medical School renamed itself the Rosalind Franklin University of Medicine and Science. She has also had a number of academic programs, auditoriums, and labs named for her. In 2013, Newnham College principal Dame Carol Black helped install a plaque commemorating Franklin at the Eagle Pub in Cambridge. Crick and Watson, who already had a plaque in the pub, drank there often while working on the DNA project, and allegedly boasted about discovering “the secret of life” to other patrons.

10. SHE IS THE SUBJECT OF SEVERAL BIOGRAPHIES.

The first, 1975’s Rosalind Franklin and DNA, was written by her friend Anne Sayre, largely as a reaction to Watson’s The Double Helix. In 2002, Brenda Maddox published Rosalind Franklin: The Dark Lady of DNA.

11. AN OBJECT IN SPACE IS NAMED AFTER HER.

In 1997, amateur Australian astronomer John Broughton discovered an asteroid, which he named 9241 Rosfranklin.

12. AT LEAST ONE HISTORY RAP BATTLE IS ABOUT HER.

It was produced by seventh graders in Oakland, California (with some help from teacher Tom McFadden). And it is delightful.

13. SHE HAS BEEN IMMORTALIZED ON THE SMALL SCREEN AND THE BIG STAGE.

In 1987, BBC’s Horizon series aired The Race for the Double Helix, starring Juliet Stevenson as Franklin. Jeff Goldblum played Watson. In 2011, playwright Anna Ziegler premiered a one-act about Franklin called Photograph 51. It opened on the West End in 2015, starring Nicole Kidman as Franklin.

14. THE 2015 RUN OF PHOTOGRAPH 51 RE-IGNITED THE OLD CONTROVERSY.

While Kidman got much praise from critics for her turn as Franklin in Photograph 51, Maurice Wilkins’ friends and former colleagues have taken exception to a scene where Wilkins takes a photograph—the titular Photo 51, which showed evidence of DNA’s structure—from Franklin’s desk when she isn’t there, saying he would never have done something so dishonorable.

15. THE PLAY MAY COME TO THE BIG SCREEN IN THE NEXT FEW YEARS.

In 2016, the West End production’s director, Michael Grandage, told The Hollywood Reporter that he hopes to turn the play into a film, with Kidman reprising the role.

nextArticle.image_alt|e
The American Museum of Natural History
arrow
Lists
10 Surprising Ways Senses Shape Perception
The American Museum of Natural History
The American Museum of Natural History

Every bit of information we know about the world we gathered with one of our five senses. But even with perfect pitch or 20/20 vision, our perceptions don’t always reflect an accurate picture of our surroundings. Our brain is constantly filling in gaps and taking shortcuts, which can result in some pretty wild illusions.

That’s the subject of “Our Senses: An Immersive Experience,” a new exhibition at the American Museum of Natural History in New York City. Mental Floss recently took a tour of the sensory funhouse to learn more about how the brain and the senses interact.

1. LIGHTING REVEALS HIDDEN IMAGES.

Woman and child looking at pictures on a wall

Under normal lighting, the walls of the first room of “Our Senses” look like abstract art. But when the lights change color, hidden illustrations are revealed. The three lights—blue, red, and green—used in the room activate the three cone cells in our eyes, and each color highlights a different set of animal illustrations, giving the viewers the impression of switching between three separate rooms while standing still.

2. CERTAIN SOUNDS TAKE PRIORITY ...

We can “hear” many different sounds at once, but we can only listen to a couple at a time. The AMNH exhibit demonstrates this with an audio collage of competing recordings. Our ears automatically pick out noises we’re conditioned to react to, like an ambulance siren or a baby’s cry. Other sounds, like individual voices and musical instruments, require more effort to detect.

3. ... AS DO CERTAIN IMAGES.

When looking at a painting, most people’s eyes are drawn to the same spots. The first things we look for in an image are human faces. So after staring at an artwork for five seconds, you may be able to say how many people are in it and what they look like, but would likely come up short when asked to list the inanimate object in the scene.

4. PAST IMAGES AFFECT PRESENT PERCEPTION.

Our senses often are more suggestible than we would like. Check out the video above. After seeing the first sequence of animal drawings, do you see a rat or a man’s face in the last image? The answer is likely a rat. Now watch the next round—after being shown pictures of faces, you might see a man’s face instead even though the final image hasn’t changed.

5. COLOR INFLUENCES TASTE ...

Every cooking show you’ve watched is right—presentation really is important. One look at something can dictate your expectations for how it should taste. Researchers have found that we perceive red food and drinks to taste sweeter and green food and drinks to taste less sweet regardless of chemical composition. Even the color of the cup we drink from can influence our perception of taste.

6. ... AND SO DOES SOUND

Sight isn’t the only sense that plays a part in how we taste. According to one study, listening to crunching noises while snacking on chips makes them taste fresher. Remember that trick before tossing out a bag of stale junk food.

7. BEING HYPER-FOCUSED HAS DRAWBACKS.

Have you ever been so focused on something that the world around you seemed to disappear? If you can’t recall the feeling, watch the video above. The instructions say to keep track of every time a ball is passed. If you’re totally absorbed, you may not notice anything peculiar, but watch it a second time without paying attention to anything in particular and you’ll see a person in a gorilla suit walk into the middle of the screen. The phenomenon that allows us to tune out big details like this is called selective attention. If you devote all your mental energy to one task, your brain puts up blinders that block out irrelevant information without you realizing it.

8. THINGS GET WEIRD WHEN SENSES CONTRADICT EACH OTHER.

Girl standing in optical illusion room.

The most mind-bending room in the "Our Senses" exhibit is practically empty. The illusion comes from the black grid pattern painted onto the white wall in such a way that straight planes appear to curve. The shapes tell our eyes we’re walking on uneven ground while our inner ear tells us the floor is stable. It’s like getting seasick in reverse: This conflicting sensory information can make us feel dizzy and even nauseous.

9. WE SEE SHADOWS THAT AREN’T THERE.

If our brains didn’t know how to adjust for lighting, we’d see every shadow as part of the object it falls on. But we can recognize that the half of a street that’s covered in shade isn’t actually darker in color than the half that sits in the sun. It’s a pretty useful adaptation—except when it’s hijacked for optical illusions. Look at the image above: The squares marked A and B are actually the same shade of gray. Because the pillar appears to cast a shadow over square B, our brain assumes it’s really lighter in color than what we’re shown.

10. WE SEE FACES EVERYWHERE.

The human brain is really good at recognizing human faces—so good it can make us see things that aren’t there. This is apparent in the Einstein hollow head illusion. When looking at the mold of Albert Einstein’s face straight on, the features appear to pop out rather than sink in. Our brain knows we’re looking at something similar to a human face, and it knows what human faces are shaped like, so it automatically corrects the image that it’s given.

All images courtesy of the American Museum of Natural History unless otherwise noted.

nextArticle.image_alt|e
NASA/JPL-Caltech
arrow
Space
More Details Emerge About 'Oumuamua, Earth's First-Recorded Interstellar Visitor
 NASA/JPL-Caltech
NASA/JPL-Caltech

In October, scientists using the University of Hawaii's Pan-STARRS 1 telescope sighted something extraordinary: Earth's first confirmed interstellar visitor. Originally called A/2017 U1, the once-mysterious object has a new name—'Oumuamua, according to Scientific American—and researchers continue to learn more about its physical properties. Now, a team from the University of Hawaii's Institute of Astronomy has published a detailed report of what they know so far in Nature.

Fittingly, "'Oumuamua" is Hawaiian for "a messenger from afar arriving first." 'Oumuamua's astronomical designation is 1I/2017 U1. The "I" in 1I/2017 stands for "interstellar." Until now, objects similar to 'Oumuamua were always given "C" and "A" names, which stand for either comet or asteroid. New observations have researchers concluding that 'Oumuamua is unusual for more than its far-flung origins.

It's a cigar-shaped object 10 times longer than it is wide, stretching to a half-mile long. It's also reddish in color, and is similar in some ways to some asteroids in our solar system, the BBC reports. But it's much faster, zipping through our system, and has a totally different orbit from any of those objects.

After initial indecision about whether the object was a comet or an asteroid, the researchers now believe it's an asteroid. Long ago, it might have hurtled from an unknown star system into our own.

'Oumuamua may provide astronomers with new insights into how stars and planets form. The 750,000 asteroids we know of are leftovers from the formation of our solar system, trapped by the Sun's gravity. But what if, billions of years ago, other objects escaped? 'Oumuamua shows us that it's possible; perhaps there are bits and pieces from the early years of our solar system currently visiting other stars.

The researchers say it's surprising that 'Oumuamua is an asteroid instead of a comet, given that in the Oort Cloud—an icy bubble of debris thought to surround our solar system—comets are predicted to outnumber asteroids 200 to 1 and perhaps even as high as 10,000 to 1. If our own solar system is any indication, it's more likely that a comet would take off before an asteroid would.

So where did 'Oumuamua come from? That's still unknown. It's possible it could've been bumped into our realm by a close encounter with a planet—either a smaller, nearby one, or a larger, farther one. If that's the case, the planet remains to be discovered. They believe it's more likely that 'Oumuamua was ejected from a young stellar system, location unknown. And yet, they write, "the possibility that 'Oumuamua has been orbiting the galaxy for billions of years cannot be ruled out."

As for where it's headed, The Atlantic's Marina Koren notes, "It will pass the orbit of Jupiter next May, then Neptune in 2022, and Pluto in 2024. By 2025, it will coast beyond the outer edge of the Kuiper Belt, a field of icy and rocky objects."

Last month, University of Wisconsin–Madison astronomer Ralf Kotulla and scientists from UCLA and the National Optical Astronomy Observatory (NOAO) used the WIYN Telescope on Kitt Peak, Arizona, to take some of the first pictures of 'Oumuamua. You can check them out below.

Images of an interloper from beyond the solar system — an asteroid or a comet — were captured on Oct. 27 by the 3.5-meter WIYN Telescope on Kitt Peak, Ariz.
Images of 'Oumuamua—an asteroid or a comet—were captured on October 27.
WIYN OBSERVATORY/RALF KOTULLA

U1 spotted whizzing through the Solar System in images taken with the WIYN telescope. The faint streaks are background stars. The green circles highlight the position of U1 in each image. In these images U1 is about 10 million times fainter than the faint
The green circles highlight the position of U1 in each image against faint streaks of background stars. In these images, U1 is about 10 million times fainter than the faintest visible stars.
R. Kotulla (University of Wisconsin) & WIYN/NOAO/AURA/NSF

Color image of U1, compiled from observations taken through filters centered at 4750A, 6250A, and 7500A.
Color image of U1.
R. Kotulla (University of Wisconsin) & WIYN/NOAO/AURA/NSF

Editor's note: This story has been updated.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios