CLOSE
Silly rabbit via Wikimedia Commons // CC BY 3.0
Silly rabbit via Wikimedia Commons // CC BY 3.0

15 Positively Reinforcing Facts About B.F. Skinner

Silly rabbit via Wikimedia Commons // CC BY 3.0
Silly rabbit via Wikimedia Commons // CC BY 3.0

B.F. (Burrhus Frederic) Skinner was one of the preeminent American psychologists of the 20th century. Skinner founded “radical behaviorism”—a twist on traditional behaviorism, a field of psychology that focused exclusively on observable human behavior. Thoughts, feelings, and perceptions were cast aside as unobservable.

Skinner dubbed his own method of observing behavior “operant conditioning,” which posited that behavior is determined solely by its consequences—either reinforcements or punishments. He argued that people can be manipulated to exhibit or inhibit a behavior based on these consequences.

To Skinner’s critics, the idea that these “principles of reinforcement,” as he called them, lead to easy “behavior modification” suggested that we do not have free will and are little more than automatons acting in response to stimuli. But his fans considered him visionary. Controversial to the end, Skinner was well known for his unconventional methods, unusual inventions, and utopian—some say dystopian—ideas about human society.

1. HE INVENTED THE "OPERANT CONDITIONING" OR "SKINNER" BOX.

Skinner believed that the best way to understand behavior is to look at the causes of an action and its consequences. He called this approach “operant conditioning.” Skinner began by studying rats interacting with an environment inside a box, where they were rewarded with a pellet of food for responding to a stimulus like light or sound with desired behavior. This simple experiment design would over the years take on dark metaphorical meaning: Any environment that had mechanisms in place to manipulate or control behavior could be called a "Skinner box." Recently, some have argued that social media is a sort of digital Skinner box: Likes, clicks, and shares are the pellet-like rewards we get for responding to our environment with certain behavior. Yes, we are the rats.

2. HE BELIEVED ALL BEHAVIOR WAS AFFECTED BY ONE OF THREE "OPERANTS."

Skinner proposed there were only three “operants” that had affected human behavior. Neutral operants were responses from the environment that had a benign effect on a behavior. Reinforcers were responses that increased the likelihood of a behavior’s repetition. And punishers decreased the likelihood of a behavior’s repetition. While he was correct that behavior can be modified via this system, it’s only one of many methods for doing so, and it failed to take into account how emotions, thoughts, and—as we learned eventually—the brain itself account for changes in behavior.

3. HE'S RESPONSIBLE FOR THE TERM "POSITIVE REINFORCEMENT."

Skinner eventually moved on to studying pigeons in his Skinner Box. The pigeons would peck at a disc to gain access to food at various intervals, and for completing certain tasks. From this Skinner concluded that some form of reinforcement was crucial in learning new behaviors. To his mind, positive reinforcement strengthens a behavior by providing a consequence an individual finds rewarding. He concluded that reinforced behavior tends to be repeated and strengthened.

4. SOME CRITICS FELT THIS APPROACH AMOUNTED TO BRIBERY.

Critics were dubious that Skinner's focus on behavior modification through positive reinforcing of desired behavior could actually change behavior for the long term, and that it was little more than temporary reward, like bribery, for a short-term behavioral change.

5. "NEGATIVE REINFORCEMENT" ISN'T WHAT YOU THINK.

Skinner believed negative reinforcement also helped to strengthen behavior; this doesn't mean exposing an animal or person to a negative stimulus, but rather removing an “unpleasant reinforcer.” The idea was that removing the negative stimulus would feel like a “reward” to the animal or person.

6. SKINNER TAUGHT PIGEONS TO PLAY PING-PONG.

As part of his research into positive reinforcement, he taught pigeons to play ping-pong as a first step in seeing how trainable they were. He ultimately wanted to teach them to guide bombs and missiles and even convinced the military to fund his research to that effect. He liked working with pigeons because they responded well to reinforcements and punishments, thus validating his theories. We know now that pigeons can be trained in a whole host of tasks, including distinguishing written words from nonsense and spotting cancer.

7. HIS FIRST BOOK, THE BEHAVIOR OF ORGANISMS, BROKE NEW GROUND.

Published in 1938, Skinner’s debut tome made the case that simple observation of cause and effect, reward and punishment, were as significant to understanding behavior as other “conceptual or neural processes.”

Skinner believed behavior was everything. Thoughts and feelings were just unreliable byproducts of behaviors, he argued—and therefore dismissed them. Many of his fellow psychologists disagreed. Regardless, Skinner’s theories contributed to a greater understanding of the relationship between stimuli and resulting behavior and may have even laid the groundwork for understanding the brain’s reward circuitry, which centers around the amygdala.

8. HE CREATED "THE BABY TENDER."

Skinner was fond of inventions, and having children gave him a new outlet for his tendencies. He designed a special crib for his infant daughter called “the baby tender.” The clear box, with air holes, was heated so that the baby didn't need blankets. Unlike typical cribs, there were no slats in the sides, which he said prevented possible injury. Unsurprisingly, it did not catch on popularly.

9. HE ALSO DEVELOPED HIS OWN "TEACHING MACHINE."


Silly rabbit via Wikimedia Commons // CC BY 3.0

You may have Skinner to thank for modern school workbooks and test-taking procedures. In 1954 Skinner visited his daughter’s classroom and found himself frustrated with the “inefficiencies” of the teaching procedures. His first "teaching machine"—a very basic program to improve teaching methods for spelling, math, and other school subjects—was little more than a fill-in-the-blank method on workbook or computer. It’s now considered a precursor to computer-assisted learning programs.

10. SKINNER IMAGINED AN IDEAL SOCIETY BASED ON HIS THEORIES OF HUMAN BEHAVIOR.

Skinner admired Henry David Thoreau’s famous book Walden, in which Thoreau writes about his retreat to the woods to get in greater contact with his inner nature. Skinner's "Ten Commandments" for a utopian world include: “(1) No way of life is inevitable. Examine your own closely. (2) If you do not like it, change it. (3) But do not try to change it through political action. Even if you succeed in gaining power, you will not likely be able to use it any more wisely than your predecessors. (4) Ask only to be left alone to solve your problems in your own way. (5) Simplify your needs. Learn how to be happy with fewer possessions.”

11. HE WROTE A UTOPIAN NOVEL, WALDEN TWO.

Alex from Ithaca, NY, via Wikimedia Commons // CC BY 2.0

Though inspired by Walden, Skinner also felt the book was too self-indulgent, so he wrote his own fictional follow-up with the 1948 novel Walden Two. The book proposed a type of utopian—some say dystopian—society that employed a system of behavior modification based on operant conditioning. This system of rewards and punishments would, Skinner proposed, make people into good citizens:

“We can achieve a sort of control under which the controlled, though they are following a code much more scrupulously than was ever the case under the old system, nevertheless feel free. They are doing what they want to do, not what they are forced to do. That's the source of the tremendous power of positive reinforcement—there's no restraint and no revolt. By careful cultural design, we control not the final behavior, but the inclination to behave—the motives, desires, the wishes.”

12. SOME FELT HIS IDEAS WERE REDUCTIONIST …

Critics, of which there were many, felt he reduced human behavior to a series of actions and reactions: that an individual human “mind” only existed in a social context, and that humans could be easily manipulated by external cues. He did not put much store in his critics. Even at age 83, just three years before he died, he told Daniel Goleman in a 1987 New York Times article, “I think cognitive psychology is a great hoax and a fraud, and that goes for brain science, too. They are nowhere near answering the important questions about behavior.”

13. … OR WORSE. HIS ACADEMIC COLLEAGUES WERE HORRIFIED BY WALDEN TWO.

Astronomer and colleague JK Jessup's reaction is a good example of their take on his idealized world. Jessup wrote, “Skinner's utopian vision could change the nature of Western civilization more disastrously than the nuclear physicists and biochemists combined.”

14. HE IMPLIED THAT HUMANS HAD NO FREE WILL OR INDIVIDUAL CONSCIOUSNESS.

In the late 1960s and early '70s, Skinner wrote several works applying his behavioral theories to society, including Beyond Freedom and Dignity (1971). He drew fire for implying that humans had no free will or individual consciousness but could simply be controlled by reward and punishment. His critics shouldn't have been surprised: This was the very essence of his behaviorism. He, however, was unconcerned with criticism. His daughter Julie S. Vargas has written that “Skinner felt that by answering critics (a) you showed that their criticism affected you; and (b) you gave them attention, thus raising their reputation. So he left replies to others.”

15. HE DIED CONVINCED THAT THE FATE OF HUMANITY LAY IN APPLYING HIS METHODS OF BEHAVIORAL SCIENCE TO SOCIETY.

In 1990, he died of leukemia at age 86 after receiving a Lifetime Achievement Award from the American Psychological Association. Proud of his work, he was nonetheless concerned about the fate of humanity and worried “about daily life in Western culture, international conflict and peace, and why people were not acting to save the world.”

nextArticle.image_alt|e
The American Museum of Natural History
arrow
Lists
10 Surprising Ways Senses Shape Perception
The American Museum of Natural History
The American Museum of Natural History

Every bit of information we know about the world we gathered with one of our five senses. But even with perfect pitch or 20/20 vision, our perceptions don’t always reflect an accurate picture of our surroundings. Our brain is constantly filling in gaps and taking shortcuts, which can result in some pretty wild illusions.

That’s the subject of “Our Senses: An Immersive Experience,” a new exhibition at the American Museum of Natural History in New York City. Mental Floss recently took a tour of the sensory funhouse to learn more about how the brain and the senses interact.

1. LIGHTING REVEALS HIDDEN IMAGES.

Woman and child looking at pictures on a wall

Under normal lighting, the walls of the first room of “Our Senses” look like abstract art. But when the lights change color, hidden illustrations are revealed. The three lights—blue, red, and green—used in the room activate the three cone cells in our eyes, and each color highlights a different set of animal illustrations, giving the viewers the impression of switching between three separate rooms while standing still.

2. CERTAIN SOUNDS TAKE PRIORITY ...

We can “hear” many different sounds at once, but we can only listen to a couple at a time. The AMNH exhibit demonstrates this with an audio collage of competing recordings. Our ears automatically pick out noises we’re conditioned to react to, like an ambulance siren or a baby’s cry. Other sounds, like individual voices and musical instruments, require more effort to detect.

3. ... AS DO CERTAIN IMAGES.

When looking at a painting, most people’s eyes are drawn to the same spots. The first things we look for in an image are human faces. So after staring at an artwork for five seconds, you may be able to say how many people are in it and what they look like, but would likely come up short when asked to list the inanimate object in the scene.

4. PAST IMAGES AFFECT PRESENT PERCEPTION.

Our senses often are more suggestible than we would like. Check out the video above. After seeing the first sequence of animal drawings, do you see a rat or a man’s face in the last image? The answer is likely a rat. Now watch the next round—after being shown pictures of faces, you might see a man’s face instead even though the final image hasn’t changed.

5. COLOR INFLUENCES TASTE ...

Every cooking show you’ve watched is right—presentation really is important. One look at something can dictate your expectations for how it should taste. Researchers have found that we perceive red food and drinks to taste sweeter and green food and drinks to taste less sweet regardless of chemical composition. Even the color of the cup we drink from can influence our perception of taste.

6. ... AND SO DOES SOUND

Sight isn’t the only sense that plays a part in how we taste. According to one study, listening to crunching noises while snacking on chips makes them taste fresher. Remember that trick before tossing out a bag of stale junk food.

7. BEING HYPER-FOCUSED HAS DRAWBACKS.

Have you ever been so focused on something that the world around you seemed to disappear? If you can’t recall the feeling, watch the video above. The instructions say to keep track of every time a ball is passed. If you’re totally absorbed, you may not notice anything peculiar, but watch it a second time without paying attention to anything in particular and you’ll see a person in a gorilla suit walk into the middle of the screen. The phenomenon that allows us to tune out big details like this is called selective attention. If you devote all your mental energy to one task, your brain puts up blinders that block out irrelevant information without you realizing it.

8. THINGS GET WEIRD WHEN SENSES CONTRADICT EACH OTHER.

Girl standing in optical illusion room.

The most mind-bending room in the "Our Senses" exhibit is practically empty. The illusion comes from the black grid pattern painted onto the white wall in such a way that straight planes appear to curve. The shapes tell our eyes we’re walking on uneven ground while our inner ear tells us the floor is stable. It’s like getting seasick in reverse: This conflicting sensory information can make us feel dizzy and even nauseous.

9. WE SEE SHADOWS THAT AREN’T THERE.

If our brains didn’t know how to adjust for lighting, we’d see every shadow as part of the object it falls on. But we can recognize that the half of a street that’s covered in shade isn’t actually darker in color than the half that sits in the sun. It’s a pretty useful adaptation—except when it’s hijacked for optical illusions. Look at the image above: The squares marked A and B are actually the same shade of gray. Because the pillar appears to cast a shadow over square B, our brain assumes it’s really lighter in color than what we’re shown.

10. WE SEE FACES EVERYWHERE.

The human brain is really good at recognizing human faces—so good it can make us see things that aren’t there. This is apparent in the Einstein hollow head illusion. When looking at the mold of Albert Einstein’s face straight on, the features appear to pop out rather than sink in. Our brain knows we’re looking at something similar to a human face, and it knows what human faces are shaped like, so it automatically corrects the image that it’s given.

All images courtesy of the American Museum of Natural History unless otherwise noted.

nextArticle.image_alt|e
NASA/JPL-Caltech
arrow
Space
More Details Emerge About 'Oumuamua, Earth's First-Recorded Interstellar Visitor
 NASA/JPL-Caltech
NASA/JPL-Caltech

In October, scientists using the University of Hawaii's Pan-STARRS 1 telescope sighted something extraordinary: Earth's first confirmed interstellar visitor. Originally called A/2017 U1, the once-mysterious object has a new name—'Oumuamua, according to Scientific American—and researchers continue to learn more about its physical properties. Now, a team from the University of Hawaii's Institute of Astronomy has published a detailed report of what they know so far in Nature.

Fittingly, "'Oumuamua" is Hawaiian for "a messenger from afar arriving first." 'Oumuamua's astronomical designation is 1I/2017 U1. The "I" in 1I/2017 stands for "interstellar." Until now, objects similar to 'Oumuamua were always given "C" and "A" names, which stand for either comet or asteroid. New observations have researchers concluding that 'Oumuamua is unusual for more than its far-flung origins.

It's a cigar-shaped object 10 times longer than it is wide, stretching to a half-mile long. It's also reddish in color, and is similar in some ways to some asteroids in our solar system, the BBC reports. But it's much faster, zipping through our system, and has a totally different orbit from any of those objects.

After initial indecision about whether the object was a comet or an asteroid, the researchers now believe it's an asteroid. Long ago, it might have hurtled from an unknown star system into our own.

'Oumuamua may provide astronomers with new insights into how stars and planets form. The 750,000 asteroids we know of are leftovers from the formation of our solar system, trapped by the Sun's gravity. But what if, billions of years ago, other objects escaped? 'Oumuamua shows us that it's possible; perhaps there are bits and pieces from the early years of our solar system currently visiting other stars.

The researchers say it's surprising that 'Oumuamua is an asteroid instead of a comet, given that in the Oort Cloud—an icy bubble of debris thought to surround our solar system—comets are predicted to outnumber asteroids 200 to 1 and perhaps even as high as 10,000 to 1. If our own solar system is any indication, it's more likely that a comet would take off before an asteroid would.

So where did 'Oumuamua come from? That's still unknown. It's possible it could've been bumped into our realm by a close encounter with a planet—either a smaller, nearby one, or a larger, farther one. If that's the case, the planet remains to be discovered. They believe it's more likely that 'Oumuamua was ejected from a young stellar system, location unknown. And yet, they write, "the possibility that 'Oumuamua has been orbiting the galaxy for billions of years cannot be ruled out."

As for where it's headed, The Atlantic's Marina Koren notes, "It will pass the orbit of Jupiter next May, then Neptune in 2022, and Pluto in 2024. By 2025, it will coast beyond the outer edge of the Kuiper Belt, a field of icy and rocky objects."

Last month, University of Wisconsin–Madison astronomer Ralf Kotulla and scientists from UCLA and the National Optical Astronomy Observatory (NOAO) used the WIYN Telescope on Kitt Peak, Arizona, to take some of the first pictures of 'Oumuamua. You can check them out below.

Images of an interloper from beyond the solar system — an asteroid or a comet — were captured on Oct. 27 by the 3.5-meter WIYN Telescope on Kitt Peak, Ariz.
Images of 'Oumuamua—an asteroid or a comet—were captured on October 27.
WIYN OBSERVATORY/RALF KOTULLA

U1 spotted whizzing through the Solar System in images taken with the WIYN telescope. The faint streaks are background stars. The green circles highlight the position of U1 in each image. In these images U1 is about 10 million times fainter than the faint
The green circles highlight the position of U1 in each image against faint streaks of background stars. In these images, U1 is about 10 million times fainter than the faintest visible stars.
R. Kotulla (University of Wisconsin) & WIYN/NOAO/AURA/NSF

Color image of U1, compiled from observations taken through filters centered at 4750A, 6250A, and 7500A.
Color image of U1.
R. Kotulla (University of Wisconsin) & WIYN/NOAO/AURA/NSF

Editor's note: This story has been updated.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios