FAECIASP/NASA/Conicet of Argentina/Getty Images
FAECIASP/NASA/Conicet of Argentina/Getty Images

Everything You Ever Wanted to Know About Black Holes

FAECIASP/NASA/Conicet of Argentina/Getty Images
FAECIASP/NASA/Conicet of Argentina/Getty Images

They’re probably the weirdest—and certainly the most puzzling—objects in the universe. And yet black holes are oddly familiar, figuring prominently in pop culture (both Matthew McConaughey and Homer Simpson have had perilous encounters with them). It also seems they’re always in the news—as they were last year when an Israeli researcher created an artificial black hole (sort of) in his laboratory. (Read on to learn more about that.) But what exactly is the nature of this bizarre phenomenon? Here's what we know … and don't know.

WHAT IS A BLACK HOLE?

A black hole is a region of space in which gravity exerts such an enormous pull that nothing—not even light—can escape. That’s the simple definition of a black hole. But if you talk to a physicist, they’ll also describe a black hole as a region of very severely curved space-time—so sharply curved, in fact, that it’s “pinched off,” so to speak, from the rest of the universe.

This idea of curved space-time goes back to the work of Einstein. It was just over 100 years ago that Einstein put forward his theory of gravity, known as the general theory of relativity. According to the theory, matter curves, or distorts, the very fabric of space. A small object like Earth causes only a small amount of distortion; a star like our Sun causes more warping. And what about a very heavy, dense object? According to Einstein’s theory, if you squeeze enough mass into a small enough space, it will undergo a collapse, forming a black hole; the amount of warping will become infinite.

The boundary of the black hole is known as the “event horizon”—the point of no return. Matter that crosses the event horizon can never return to the outside. In this sense, the inside of a black hole is not even a part of our universe: Whatever might be happening there, we can never know about, since no signal from the inside can ever reach the outside. According to general relativity, the center of a black hole will contain a “singularity”—a point of infinite density and of infinitely curved space-time.

HOW DO YOU MAKE ONE?

Black holes come in different sizes. When a sufficiently massive star exhausts its nuclear fuel supply—that is, when it can no longer produce energy by means of a fusion reaction in its core—it explodes (this is called a supernova, in which the star sheds material from its outer layers); the remaining core then contracts, due to gravity. If the star was more than about 20 times as massive as the Sun, then nothing can stop this contraction, and the star collapses until it’s smaller than its own event horizon, becoming a black hole. These are called stellar-mass black holes, since their masses are on par with the masses of stars. But there are also giant black holes, with masses equal to that of millions of stars. These “supermassive” black holes are believed to be located in the centers of most galaxies, including our own Milky Way; theorists believe they evolved together with the galaxies that harbor them. There’s also speculation that microscopic or “primordial” black holes may have been created at the time of the big bang.

HOW DO WE KNOW THEY EXIST?

An artist's impression of a binary system containing a stellar-mass black hole pulling gas away from a companion star on the right. Image credit: NASA/CXC/M.Weiss

 
Since black holes emit no light, there’s no way to see them directly. However, astronomers have been able to infer their existence based on observations of ordinary stars that orbit a black hole as part of a binary star system. Sometimes the black hole “swallows” material from the companion star. As this material swirls around the black hole, it heats up due to friction; as a result it emits X-rays, which can be detected from Earth. (The X-rays are emitted before the material crosses the black hole’s event horizon.) This is how the first black hole to be detected, known as Cygnus X-1, was found.

WHAT WOULD HAPPEN IF YOU FELL IN ONE?

The answer, quite literally, depends on who you ask. Because black holes stretch time as well as space, an astronaut unlucky enough to fall into the hole sees something quite different from what an observer watching from a safe distance would observe. From the point of view of the unlucky astronaut, things do not go well. In the case of a stellar-mass black hole, she’ll feel something called tidal forces—the unequal pulling on her feet compared to her head (assuming she enters the hole feet-first). The astronaut would be stretched out like spaghetti, as Stephen Hawking has vividly put it. In the case of a supermassive black hole, tidal forces at the event horizon are less severe; the astronaut may not feel anything unusual is happening as she crosses it. Nonetheless, she is doomed; as she approaches the singularity, the tidal forces will inevitably rip her apart, before she is crushed into oblivion.

But the view from the outside is quite different. Because of the time-stretching—physicists call it “time dilation”—an observer located far from the event horizon never actually sees the astronaut meet her doom. Instead, we see her get ever-closer to the event horizon, but never crossing it. If we could see her watch, we’d see it ticking more and more slowly. She would end up “frozen” on the edge of the black hole. There is no right or wrong answer to the question of “How is the astronaut doing?” It really does depend on your frame of reference.

WOULD YOU BE ABLE TO GET BACK OUT?

The short answer is, probably not. But physicists have speculated about the existence of “wormholes”—a kind of tunnel through space-time connecting one black hole to another. When Carl Sagan was working on his novel Contact, he asked physicist Kip Thorne to suggest a method by which the story’s heroine might quickly travel from the Earth to the star Vega (some 26 light-years away); Thorne considered the matter, eventually suggesting that a wormhole might do the trick. That was good enough for Sagan’s book (later made into a movie starring Jodie Foster)—but as Thorne would later acknowledge, wormholes are a highly speculative idea, and he doubts that wormholes will actually be found in our universe. (Thorne would again lend his expertise to movie-makers for the 2014 film Interstellar, where black holes play a central role.)

HOW LONG DO THEY LAST?

Before the work of Stephen Hawking in the 1970s, for all we knew, black holes stuck around forever. But Hawking, together with physicist Jacob Beckenstein, showed that black holes actually emit a kind of radiation (now known as Hawking radiation). This radiation carries away energy, which means that, over very long time scales, black holes should simply evaporate away into nothingness. (Theorists who have crunched the numbers believe this process should take billions upon billions of years—the era of “black hole evaporation” lies in the far future; in comparison, our universe’s current age—about 14 billion years—is a mere blip.)

The announcement that Jeff Steinhauer, a physicist at the Technion-Israel Institute of Technology in Haifa, Israel, had created an artificial black hole analogue bears directly on the issue of black hole evaporation. Steinhauer’s experiment didn’t use gravity; instead, he used a tube filled with ultra-cold atoms in a peculiar state known as a Bose-Einstein condensate. Then he accelerated the atoms so that they were moving faster than sound (but actually still quite slow, since sound can only move slowly in such a condensate), creating an “acoustic” event horizon, as the researchers describe it. Think of it as swallowing sound rather than light, as a black hole does. The experiment produced more than just an event horizon—it produced the equivalent of Hawking radiation, Steinhauer says.

If the experiment holds up to scrutiny, it could be seen as bolstering the case for black hole evaporation. The physics community is reacting cautiously; Silke Weinfurter of the University of Nottingham, UK, told Nature: “This experiment … is really amazing, [but] it doesn’t prove that Hawking radiation exists around astrophysical black holes.”

Does it matter if black holes evaporate? If you’re a physicist, it does. The problem has to do with “information.” According to quantum mechanics, information—the numbers that describe how massive a particle is, how fast it’s spinning, and so on—can neither be created nor destroyed. But when something falls into a black hole, whatever information it contained would seem to disappear. Even worse, when the black hole evaporates, the Hawking radiation that’s emitted is all scrambled up; the original information is seemingly lost for good. Although a number of possible solutions have been put forward, this information loss paradox remains one of the most pressing problems in theoretical physics.

ARE THERE ANY NEW WAYS TO STUDY THEM?

Yes. In 2016, scientists announced the discovery of gravitational waves emitted by a pair of merging black holes (and, a few months later, a second pair of colliding black holes was announced). Gravitational waves are ripples in space-time; though predicted by general relativity, they eluded detection for a century, and were only successfully snagged with the completion of the LIGO detectors (Laser Interferometer Gravitational wave Observatory). As with the earlier kinds of observations, the evidence is indirect—we don’t actually see the black holes—but the strength and profile of these gravitational waves meshes perfectly with Einstein’s theory and with the known physics of black holes.

WHAT'S NEXT ON THE (EVENT) HORIZON?

The heart of the Milky Way. Soon—perhaps this year—we’ll get a glimpse of a black hole event horizon, thanks to the Event Horizon Telescope. It’s actually a globe-spanning array of radio telescopes, and its prime target will be the supermassive black hole at the center of our galaxy—an object known as Sagittarius A*. Because it’s so far from Earth (about 25,000 light-years), it appears as a mere pinprick in the sky; no single telescope has the resolving power to show what’s happening in any detail. But with the combined power of the entire array, astronomers expect to produce a detailed picture of the radiation emitted by gas and dust just before it crosses the black hole’s event horizon.

nextArticle.image_alt|e
MARS Bioimaging
The World's First Full-Color 3D X-Rays Have Arrived
MARS Bioimaging
MARS Bioimaging

The days of drab black-and-white, 2D X-rays may finally be over. Now, if you want to see what your broken ankle looks like in all its full-color, 3D glory, you can do so thanks to new body-scanning technology. The machine, spotted by BGR, comes courtesy of New Zealand-based manufacturer MARS Bioimaging.

It’s called the MARS large bore spectral scanner, and it uses spectral molecular imaging (SMI) to produce images that are fully colorized and in 3D. While visually appealing, the technology isn’t just about aesthetics—it could help doctors identify issues more accurately and provide better care.

Its pixel detectors, called “Medipix” chips, allow the machine to identify colors and distinguish between materials that look the same on regular CT scans, like calcium, iodine, and gold, Buzzfeed reports. Bone, fat, and water are also differentiated by color, and it can detect details as small as a strand of hair.

“It gives you a lot more information, and that’s very useful for medical imaging. It enables you to do a lot of diagnosis you can’t do otherwise,” Phil Butler, the founder/CEO of MARS Bioimaging and a physicist at the University of Canterbury, says in a video. “When you [have] a black-and-white camera photographing a tree with its leaves, you can’t tell whether the leaves are healthy or not. But if you’ve got a color camera, you can see whether they’re healthy leaves or diseased.”

The images are even more impressive in motion. This rotating image of an ankle shows "lipid-like" materials (like cartilage and skin) in beige, and soft tissue and muscle in red.

The technology took roughly a decade to develop. However, MARS is still working on scaling up production, so it may be some time before the machine is available commercially.

[h/t BGR]

nextArticle.image_alt|e
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017
Look Closely—Every Point of Light in This Image Is a Galaxy
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017

Even if you stare closely at this seemingly grainy image, you might not be able to tell there’s anything to it besides visual noise. But it's not static—it's a sliver of the distant universe, and every little pinprick of light is a galaxy.

As Gizmodo reports, the image was produced by the European Space Agency’s Herschel Space Observatory, a space-based infrared telescope that was launched into orbit in 2009 and was decommissioned in 2013. Created by Herschel’s Spectral and Photometric Imaging Receiver (SPIRE) and Photodetector Array Camera and Spectrometer (PACS), it looks out from our galaxy toward the North Galactic Pole, a point that lies perpendicular to the Milky Way's spiral near the constellation Coma Berenices.

A close-up of a view of distant galaxies taken by the Herschel Space Observatory
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017

Each point of light comes from the heat of dust grains between different stars in a galaxy. These areas of dust gave off this radiation billions of years before reaching Herschel. Around 1000 of those pins of light belong to galaxies in the Coma Cluster (named for Coma Berenices), one of the densest clusters of galaxies in the known universe.

The longer you look at it, the smaller you’ll feel.

[h/t Gizmodo]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios