CLOSE
FAECIASP/NASA/Conicet of Argentina/Getty Images
FAECIASP/NASA/Conicet of Argentina/Getty Images

Everything You Ever Wanted to Know About Black Holes

FAECIASP/NASA/Conicet of Argentina/Getty Images
FAECIASP/NASA/Conicet of Argentina/Getty Images

They’re probably the weirdest—and certainly the most puzzling—objects in the universe. And yet black holes are oddly familiar, figuring prominently in pop culture (both Matthew McConaughey and Homer Simpson have had perilous encounters with them). It also seems they’re always in the news—as they were last year when an Israeli researcher created an artificial black hole (sort of) in his laboratory. (Read on to learn more about that.) But what exactly is the nature of this bizarre phenomenon? Here's what we know … and don't know.

WHAT IS A BLACK HOLE?

A black hole is a region of space in which gravity exerts such an enormous pull that nothing—not even light—can escape. That’s the simple definition of a black hole. But if you talk to a physicist, they’ll also describe a black hole as a region of very severely curved space-time—so sharply curved, in fact, that it’s “pinched off,” so to speak, from the rest of the universe.

This idea of curved space-time goes back to the work of Einstein. It was just over 100 years ago that Einstein put forward his theory of gravity, known as the general theory of relativity. According to the theory, matter curves, or distorts, the very fabric of space. A small object like Earth causes only a small amount of distortion; a star like our Sun causes more warping. And what about a very heavy, dense object? According to Einstein’s theory, if you squeeze enough mass into a small enough space, it will undergo a collapse, forming a black hole; the amount of warping will become infinite.

The boundary of the black hole is known as the “event horizon”—the point of no return. Matter that crosses the event horizon can never return to the outside. In this sense, the inside of a black hole is not even a part of our universe: Whatever might be happening there, we can never know about, since no signal from the inside can ever reach the outside. According to general relativity, the center of a black hole will contain a “singularity”—a point of infinite density and of infinitely curved space-time.

HOW DO YOU MAKE ONE?

Black holes come in different sizes. When a sufficiently massive star exhausts its nuclear fuel supply—that is, when it can no longer produce energy by means of a fusion reaction in its core—it explodes (this is called a supernova, in which the star sheds material from its outer layers); the remaining core then contracts, due to gravity. If the star was more than about 20 times as massive as the Sun, then nothing can stop this contraction, and the star collapses until it’s smaller than its own event horizon, becoming a black hole. These are called stellar-mass black holes, since their masses are on par with the masses of stars. But there are also giant black holes, with masses equal to that of millions of stars. These “supermassive” black holes are believed to be located in the centers of most galaxies, including our own Milky Way; theorists believe they evolved together with the galaxies that harbor them. There’s also speculation that microscopic or “primordial” black holes may have been created at the time of the big bang.

HOW DO WE KNOW THEY EXIST?

An artist's impression of a binary system containing a stellar-mass black hole pulling gas away from a companion star on the right. Image credit: NASA/CXC/M.Weiss

 
Since black holes emit no light, there’s no way to see them directly. However, astronomers have been able to infer their existence based on observations of ordinary stars that orbit a black hole as part of a binary star system. Sometimes the black hole “swallows” material from the companion star. As this material swirls around the black hole, it heats up due to friction; as a result it emits X-rays, which can be detected from Earth. (The X-rays are emitted before the material crosses the black hole’s event horizon.) This is how the first black hole to be detected, known as Cygnus X-1, was found.

WHAT WOULD HAPPEN IF YOU FELL IN ONE?

The answer, quite literally, depends on who you ask. Because black holes stretch time as well as space, an astronaut unlucky enough to fall into the hole sees something quite different from what an observer watching from a safe distance would observe. From the point of view of the unlucky astronaut, things do not go well. In the case of a stellar-mass black hole, she’ll feel something called tidal forces—the unequal pulling on her feet compared to her head (assuming she enters the hole feet-first). The astronaut would be stretched out like spaghetti, as Stephen Hawking has vividly put it. In the case of a supermassive black hole, tidal forces at the event horizon are less severe; the astronaut may not feel anything unusual is happening as she crosses it. Nonetheless, she is doomed; as she approaches the singularity, the tidal forces will inevitably rip her apart, before she is crushed into oblivion.

But the view from the outside is quite different. Because of the time-stretching—physicists call it “time dilation”—an observer located far from the event horizon never actually sees the astronaut meet her doom. Instead, we see her get ever-closer to the event horizon, but never crossing it. If we could see her watch, we’d see it ticking more and more slowly. She would end up “frozen” on the edge of the black hole. There is no right or wrong answer to the question of “How is the astronaut doing?” It really does depend on your frame of reference.

WOULD YOU BE ABLE TO GET BACK OUT?

The short answer is, probably not. But physicists have speculated about the existence of “wormholes”—a kind of tunnel through space-time connecting one black hole to another. When Carl Sagan was working on his novel Contact, he asked physicist Kip Thorne to suggest a method by which the story’s heroine might quickly travel from the Earth to the star Vega (some 26 light-years away); Thorne considered the matter, eventually suggesting that a wormhole might do the trick. That was good enough for Sagan’s book (later made into a movie starring Jodie Foster)—but as Thorne would later acknowledge, wormholes are a highly speculative idea, and he doubts that wormholes will actually be found in our universe. (Thorne would again lend his expertise to movie-makers for the 2014 film Interstellar, where black holes play a central role.)

HOW LONG DO THEY LAST?

Before the work of Stephen Hawking in the 1970s, for all we knew, black holes stuck around forever. But Hawking, together with physicist Jacob Beckenstein, showed that black holes actually emit a kind of radiation (now known as Hawking radiation). This radiation carries away energy, which means that, over very long time scales, black holes should simply evaporate away into nothingness. (Theorists who have crunched the numbers believe this process should take billions upon billions of years—the era of “black hole evaporation” lies in the far future; in comparison, our universe’s current age—about 14 billion years—is a mere blip.)

The announcement that Jeff Steinhauer, a physicist at the Technion-Israel Institute of Technology in Haifa, Israel, had created an artificial black hole analogue bears directly on the issue of black hole evaporation. Steinhauer’s experiment didn’t use gravity; instead, he used a tube filled with ultra-cold atoms in a peculiar state known as a Bose-Einstein condensate. Then he accelerated the atoms so that they were moving faster than sound (but actually still quite slow, since sound can only move slowly in such a condensate), creating an “acoustic” event horizon, as the researchers describe it. Think of it as swallowing sound rather than light, as a black hole does. The experiment produced more than just an event horizon—it produced the equivalent of Hawking radiation, Steinhauer says.

If the experiment holds up to scrutiny, it could be seen as bolstering the case for black hole evaporation. The physics community is reacting cautiously; Silke Weinfurter of the University of Nottingham, UK, told Nature: “This experiment … is really amazing, [but] it doesn’t prove that Hawking radiation exists around astrophysical black holes.”

Does it matter if black holes evaporate? If you’re a physicist, it does. The problem has to do with “information.” According to quantum mechanics, information—the numbers that describe how massive a particle is, how fast it’s spinning, and so on—can neither be created nor destroyed. But when something falls into a black hole, whatever information it contained would seem to disappear. Even worse, when the black hole evaporates, the Hawking radiation that’s emitted is all scrambled up; the original information is seemingly lost for good. Although a number of possible solutions have been put forward, this information loss paradox remains one of the most pressing problems in theoretical physics.

ARE THERE ANY NEW WAYS TO STUDY THEM?

Yes. In 2016, scientists announced the discovery of gravitational waves emitted by a pair of merging black holes (and, a few months later, a second pair of colliding black holes was announced). Gravitational waves are ripples in space-time; though predicted by general relativity, they eluded detection for a century, and were only successfully snagged with the completion of the LIGO detectors (Laser Interferometer Gravitational wave Observatory). As with the earlier kinds of observations, the evidence is indirect—we don’t actually see the black holes—but the strength and profile of these gravitational waves meshes perfectly with Einstein’s theory and with the known physics of black holes.

WHAT'S NEXT ON THE (EVENT) HORIZON?

The heart of the Milky Way. Soon—perhaps this year—we’ll get a glimpse of a black hole event horizon, thanks to the Event Horizon Telescope. It’s actually a globe-spanning array of radio telescopes, and its prime target will be the supermassive black hole at the center of our galaxy—an object known as Sagittarius A*. Because it’s so far from Earth (about 25,000 light-years), it appears as a mere pinprick in the sky; no single telescope has the resolving power to show what’s happening in any detail. But with the combined power of the entire array, astronomers expect to produce a detailed picture of the radiation emitted by gas and dust just before it crosses the black hole’s event horizon.

nextArticle.image_alt|e
iStock
arrow
science
The Prehistoric Bacteria That Helped Create Our Cells Billions of Years Ago
iStock
iStock

We owe the existence of our cells—the very building blocks of life—to a chance relationship between bacteria that occurred more than 2 billion years ago. Flash back to Bio 101, and you might remember that humans, plants, and animals have complex eukaryotic cells, with nucleus-bound DNA, instead of single-celled prokaryotic cells. These contain specialized organelles such as the mitochondria—the cell’s powerhouse—and the chloroplast, which converts sunlight into sugar in plants.

Mitochondria and chloroplasts both look and behave a lot like bacteria, and they also share similar genes. This isn’t a coincidence: Scientists believe these specialized cell subunits are descendants of free-living prehistoric bacteria that somehow merged together to form one. Over time, they became part of our basic biological units—and you can learn how by watching PBS Eons’s latest video below.

nextArticle.image_alt|e
iStock
arrow
Stones, Bones, and Wrecks
Buckingham Palace Was Built With Jurassic Fossils, Scientists Find
iStock
iStock

The UK's Buckingham Palace is a vestige from another era, and not just because it was built in the early 18th century. According to a new study, the limestone used to construct it is filled with the fossilized remains of microbes from the Jurassic period of 200 million years ago, as The Telegraph reports.

The palace is made of oolitic limestone, which consists of individual balls of carbonate sediment called ooids. The material is strong but lightweight, and is found worldwide. Jurassic oolite has been used to construct numerous famous buildings, from those in the British city of Bath to the Empire State Building and the Pentagon.

A new study from Australian National University published in Scientific Reports found that the spherical ooids in Buckingham Palace's walls are made up of layers and layers of mineralized microbes. Inspired by a mathematical model from the 1970s for predicting the growth of brain tumors, the researchers created a model that explains how ooids are created and predicts the factors that limit their ultimate size.

A hand holding a chunk of oolite limestone
Australian National University

They found that the mineralization of the microbes forms the central core of the ooid, and the layers of sediment that gather around that core feed those microbes until the nutrients can no longer reach the core from the outermost layer.

This contrasts with previous research on how ooids form, which hypothesized that they are the result of sediment gathered from rolling on the ocean floor. It also reshapes how we think about the buildings made out of oolitic limestone from this period. Next time you look up at the Empire State Building or Buckingham Palace, thank the ancient microbes.

[h/t The Telegraph]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios