CLOSE
iStock
iStock

4 Methods Scientists Use to Anticipate Outbreaks of Infectious Disease

iStock
iStock

Outbreaks of infectious disease are, by their very nature, difficult to predict. Microbes evolve rapidly, making it challenging to determine what will be the “next big one.”  To further complicate matters, our knowledge of microbes is incredibly limited. In the past decade, we’ve started to understand how much our microbiome—the collection of all of the microbes in and on our body—plays a role in health and disease. We’ve also found that we’re only scratching the surface when it comes to knowing about the microbes in the world around us, with an estimated 300,000 animal viruses lurking in the wild, undiscovered.

However, we do have some ways to figure out what may be coming next, from pathogens both known and new. Here are four approaches scientists use to try to anticipate where, how, and when outbreaks of infectious disease might occur. 

1. DISCOVERING NEW PATHOGENS

With hundreds of thousands of viruses—not to mention an untold number of bacteria, viruses, and parasites—how do we figure out which ones could spread in the human population and cause us harm? It’s a big issue to tackle, and there are a number of approaches. Ideally, we want to find these pathogens before they start making people sick, so we can be aware of them should they “spill over” from their reservoir into the human population. Those reservoirs are usually other animal species, which account for 60 to 75 percent of all new infectious diseases, but may also include other environmental sources (such as soil or water).

Finding these means carrying out labor-intensive sampling in humans and animals around the world. Virologist Nathan Wolfe is one such “pathogen hunter,” traveling the globe to collect blood samples from people and animals that might contain new viruses. This has already led to the discovery of viruses related to HIV in African hunters. Another “virus hunter,” Ian Lipkin of Columbia University, has been involved in the discovery of 500 new viruses over the past quarter-century.

While we can find these new microbes before they cause disease in humans, we’ve also used the pathogen discovery approach to determine the cause of unidentified microbes that are making people sick. We’ve recently discovered the Heartland virus as a cause of disease in humans in the Midwest and South, and studies in wildlife identified the tick-borne virus in deer, coyotes, moose and raccoons in 13 states, suggesting it may be more common in humans as well but undiagnosed. The Bourbon virus was also recently found in a man from Kansas, who later died of the infection. 

2. DETERMINING HOTSPOTS WHERE NEW MICROBES MIGHT EMERGE

Surveillance is very expensive. While ideally we’d see the types of studies described above carried out everywhere all the time, logistically this is impossible. So researchers have worked to identify hotspots—areas where new microbes are more likely to move into the human population. These type of studies have often pointed to impoverished areas that often lack coordinated surveillance as some of these hotspots—parts of Africa, Latin America, and Asia. With hotspots identified, we can, in theory, better target expensive surveillance into areas where we will get the most bang for the buck, and catch more diseases even though we’re using a smaller, more focused, net.

A recent paper modifies the hotspot idea. Researchers at the University of Georgia outlined a framework for predicting the emergence of infectious diseases by bringing together human, wildlife, and environmental data. Lead researcher Patrick Stephens noted in a press release, “"To understand what's going on with diseases overall, you need to integrate understanding of human, animal and environmental health. You can't look at diseases of humans in complete isolation of diseases of wildlife, and you can't look at diseases of wildlife in complete isolation of what's going on with the environment, because a lot of times those diseases are related to environmental degradation.”

3. LOOKING FOR NEW VERSIONS OF KNOWN PATHOGENS

Sometimes, we know what microbe to expect—we just don’t know where it will show up, or what version it will be. Influenza, for example, is a virus that’s constantly evolving and emerging. We saw the H1N1 “swine flu” pandemic of 2009, and saw pandemics that derived from avian influenza viruses in 1968, 1957, and most famously 1918. We know we’ll see another influenza pandemic sometime—but we don’t know when, or where it will start, or whether it will originate in birds or pigs or some other animal altogether.

To try to catch these microbes before they become a problem, we look at high-risk populations of people or animals. For example, studies have tested workers and animals in wet markets in Asia where live animals are sold and butchered—and where viruses such as SARS and several types of avian influenzas have been found in humans. We can look for people who are currently sick with these infections, or look for evidence of previous infections via antibodies in people's blood. Or we can monitor places where they’ve shown up previously, like Ebola has multiple times in Uganda.

The problem with these type of surveillance is that if we’re too focused in one area or on one microbe, we can miss an emergence elsewhere. That was the case in 2009 when the H1N1 influenza pandemic originated in Mexican pigs while we were watching the “bird” influenza virus H5N1 in Asia. It happened again in 2013 when Ebola took us by surprise in West Africa because we were expecting any outbreaks to appear in Central Africa.

4. COMPUTER MODELING

The good news is that any data we have on existing infections can be crunched by computers in order to try and predict where and when new outbreaks might occur. These models can incorporate information about geography, climate, and dozens of other variables in order to forecast when and where infections might appear. This has been used recently to predict the spread of the Zika virus, and previously for malaria, Rift Valley fever, and many others. The downside is that this technique works best for well-studied microbes, though work is ongoing to create more general models.

Perhaps one day in the future, we’ll be able to accurately predict and prevent “the next big one.” For now, we’re still vulnerable to the global ravages of the tiniest life forms on Earth. 

nextArticle.image_alt|e
Jamie McCarthy/Getty Images for Bill & Melinda Gates Foundation
arrow
Medicine
Bill Gates is Spending $100 Million to Find a Cure for Alzheimer's
Jamie McCarthy/Getty Images for Bill & Melinda Gates Foundation
Jamie McCarthy/Getty Images for Bill & Melinda Gates Foundation

Not everyone who's blessed with a long life will remember it. Individuals who live into their mid-80s have a nearly 50 percent chance of developing Alzheimer's, and scientists still haven't discovered any groundbreaking treatments for the neurodegenerative disease [PDF]. To pave the way for a cure, Microsoft co-founder and philanthropist Bill Gates has announced that he's donating $100 million to dementia research, according to Newsweek.

On his blog, Gates explained that Alzheimer's disease places a financial burden on both families and healthcare systems alike. "This is something that governments all over the world need to be thinking about," he wrote, "including in low- and middle-income countries where life expectancies are catching up to the global average and the number of people with dementia is on the rise."

Gates's interest in Alzheimer's is both pragmatic and personal. "This is something I know a lot about, because men in my family have suffered from Alzheimer’s," he said. "I know how awful it is to watch people you love struggle as the disease robs them of their mental capacity, and there is nothing you can do about it. It feels a lot like you're experiencing a gradual death of the person that you knew."

Experts still haven't figured out quite what causes Alzheimer's, how it progresses, and why certain people are more prone to it than others. Gates believes that important breakthroughs will occur if scientists can understand the condition's etiology (or cause), create better drugs, develop techniques for early detection and diagnosis, and make it easier for patients to enroll in clinical trials, he said.

Gates plans to donate $50 million to the Dementia Discovery Fund, a venture capital fund that supports Alzheimer's research and treatment developments. The rest will go to research startups, Reuters reports.

[h/t Newsweek]

arrow
science
A New Analysis of Chopin's Heart Reveals the Cause of His Death

For years, experts and music lovers alike have speculated over what caused celebrated composer Frederic Chopin to die at the tragically young age of 39. Following a recent examination of his heart, Polish scientists have concluded that Chopin succumbed to tuberculosis, just as his death certificate states, according to The New York Times.

When Chopin died in 1849, his body was buried in Paris, where he had lived, while his heart was transported to his home city of Warsaw, Poland. Chopin—who appeared to have been ill with tuberculosis (TB)—was terrified of the prospect of being buried alive, and nostalgic for his national roots. He asked for his heart to be cut out, and his sister later smuggled it past foreign guards and into what is now Poland.

Preserved in alcohol—likely cognac—and stored in a crystal jar, Chopin's heart was laid to rest inside Holy Cross Church in Warsaw. (It was removed by the Germans in 1944 during the Warsaw Uprising, and later returned.) But rumors began to swirl, as the same doctor tasked with removing the heart had also conducted an autopsy on the composer's body, according to the BBC.

The physician's original notes have been lost, but it's said he concluded that Chopin had died not from TB but from "a disease not previously encountered." This triggered some scholars to theorize that Chopin had died from cystic fibrosis, or even a form of emphysema, as the sickly musician suffered from chronic respiratory issues. Another suspected condition was mitral stenosis, or a narrowing of the heart valves.

Adhering to the wishes of a living relative, the Polish church and government have refused to let scientists conduct genetic tests on Chopin's heart. But over the years, teams have periodically checked up on the organ to ensure it remains in good condition, including once in 1945.

In 2014, a group of Chopin enthusiasts—including Polish scientists, religious officials, and members of the Chopin Institute, which researches and promotes Chopin's legacy—were given the go-ahead to hold a clandestine evening meeting at Holy Cross Church. There, they removed Chopin's heart from its perch inside a stone pillar to inspect it for the first time in nearly 70 years.

Fearing the jar's alcohol would evaporate, the group added hot wax to its seal and took more than 1000 photos of its contents. Pictures of the surreptitious evening procedure weren't publicly released, but were shown to the AP, which described Chopin's preserved heart as "an enlarged white lump."

It's unclear what prompted a follow-up investigation on Chopin's heart, or who allowed it, but an early version of an article in the American Journal of Medicine states that experts—who did not open the jar—have newly observed that the famed organ is "massively enlarged and floppy," with lesions and a white, frosted appearance. These observations have prompted them to diagnose the musician's cause of death as pericarditis, which is an inflammation of tissue around the heart. This likely stemmed from his tuberculosis, they said.

Some scientists might still clamor at the prospect of testing tissue samples of Chopin's heart. But Michael Witt of the Polish Academy of Sciences—who was involved in this latest examination—told The Guardian that it was unnecessary to disturb what many consider to be a symbol of national pride.

"Some people still want to open it in order to take tissue samples to do DNA tests to support their ideas that Chopin had some kind of genetic condition," Witt said. "That would be absolutely wrong. It could destroy the heart, and in any case, I am quite sure we now know what killed Chopin."

[h/t The New York Times]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios