Is the Heat Index Real?

iStock
iStock

Complaining about the humidity is a mainstay of small talk. “It’s not the heat that gets you, it’s the humidity” is a common refrain around the South, just as “it’s a dry heat” is a go-to line in the desert Southwest. The clichés aren’t wrong on this one—a hot and humid day can have a dramatic effect on both your comfort and your health. We can measure this very real impact on your body using the heat index. 

The heat index is the temperature it feels like to your body when you factor in both the actual air temperature and the amount of moisture in the air. If the heat index is 103°F, that means that the combination of heat and humidity has a similar physical impact on your body as it would if the actual air temperature were 103°F. Even though it’s tempting to think of the heat index as an exaggerated temperature that only exists to make the heat sound worse than it really is, scientists came up with the measurements after decades of medical and meteorological research devoted to studying the impact of heat and humidity on the human body. It’s the real deal.

The dew point is an important component of the heat index. The dew point is the temperature at which the air would reach 100 percent relative humidity, or become fully saturated with moisture like on a foggy morning. Since cooler air can’t hold as much moisture as warmer air, lower dew points reflect lower moisture levels and higher dew points indicate higher moisture levels. Dew points below 60°F are comfortable, while readings reaching 70°F and even 80°F range from muggy to downright oppressive.

A chart for finding the heat index based on the temperature and dew point. Image credit: National Weather Service

Measuring humidity on a hot day is important because moisture is how your body naturally cools itself off. Your sweat cools the surface of your skin through a process known as evaporative cooling. If the air is packed with moisture, it takes longer for your sweat to evaporate than it would in more normal conditions, preventing you from cooling off efficiently. The inability to lower your body temperature when it’s hot can quickly lead to medical emergencies like heat exhaustion or heat stroke, which is why the heat index is such an important measurement to pay attention to during the summer months.

The heat index is generally considered “dangerous” once the value climbs above 105°F, and your risk of falling ill increases the higher the heat index climbs.

Dry climates can have the opposite effect on your body, with the distinct lack of moisture in the air making it feel cooler to your body than it really is. Summers get oppressively hot in places like Arizona and Iraq, but the heat doesn’t affect residents as severely because the air is extremely dry. Dew points in desert regions can hover at or below 32°F even when the air temperature is well above 100°F, which is about as dry as it can get in the natural world.  

A city in Kuwait recently measured the all-time highest confirmed temperature ever recorded in the eastern hemisphere, where temperatures climbed to a sweltering 129°F during the day on July 21, 2016. The dew point there at the same time was nearly 100 degrees cooler, leading to a heat index of just 110°F, much lower than the actual air temperature. That’s not necessarily a good thing. Extreme heat combined with extreme aridity can make your sweat evaporate too efficiently, quickly dehydrating you and potentially leading to medical emergencies similar to those you would experience in a much more humid region of the world. 

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

Britain Is in the Midst of a Rare ‘Wind Drought’

iStock
iStock

Generating renewable energy in Britain is a little less than a breeze these days: A “wind drought” is halting the country’s wind turbines.

This month’s wind energy output is down 40 percent from the same time last year, New Scientist reports. On average, about 15 percent of Britain’s electricity comes from wind power. Data starting from July 1 of this year put the monthly average closer to 6.9 percent. Last month, turbines were producing less than 2 percent of Britain’s electricity—the lowest output in two years.

That’s with even more wind turbines being installed over the course of the past year, New Scientist says. The data aren’t entirely surprising, though. The jet stream tends to make the UK’s weather drier and calmer during the summer and wetter and stormier during the winter. But the high pressure the jet stream has brought with it this year has been unusually prolonged, scientists say.

“It’s like a lid, it keeps everything still,” UK Met Office spokesperson Grahame Madge told New Scientist. “From the forecast looking out over the next couple of weeks, there doesn’t seem to be any significant change on the way.”

The wind drought shouldn’t cause too many problems in the short term. Electricity demand is low during the summer (very few British homes have air conditioning), and the country’s been able to compensate for the lack of wind by burning more natural gas. If the wind drought continues to persist, though, UK residents may begin to see an increase in utility fees. Natural gas prices have already risen with the increased demand.

“As we continue to transition to a low-carbon energy system, managing the intermittency of renewable power an important role in balancing supply and demand,” a National Grid spokesperson told New Scientist. “However, we have planned for these changes and [are] ready to play our part.”

The wind drought comes about eight years after British politicians vowed to reduce the UK's dependence on fossil fuels. Last year was the first year that electricity generated from low-carbon energy sources like solar power, wind power, and nuclear power outpaced high-carbon energy sources like coal and natural gas. This summer’s wind drought may make it difficult to improve on last year’s numbers.

[h/t New Scientist]

Why Does the Sky Look Green Before a Tornado?

iStock
iStock

A common bit of folklore from tornado-prone parts of the U.S. says that when the skies start taking on an emerald hue, it's time to run inside. But why do tornadoes tend to spawn green skies in the first place? As SciShow's Michael Aranda explains, the answer has to do with the way water droplets reflect the colors of the light spectrum.

During the day, the sky is usually blue because the shorter, bluer end of the light spectrum bounces off air molecules better than than redder, longer-wavelength light. Conditions change during the sunset (and sunrise), when sunlight has to travel through more air, and when storms are forming, which means there are more water droplets around.

Tornadoes forming later in the day, around sunset, do a great job of reflecting the green part of the light spectrum that's usually hidden in a sunset because of the water droplets in the clouds, which bounce green light into our eyes. But that doesn't necessarily mean a twister is coming—it could just mean a lot of rain is in the forecast. Either way, heading inside is probably a good idea.

For the full details on how water and light conspire to turn the sky green before a storm, check out the SciShow video below.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios