6 Ways Humans Influence the Weather

iStock
iStock

If you've ever spent any length of time on Twitter, you've probably heard a thing or two about humans secretly having the ability to control the weather. While that talent only exists in movies, we humans and our everyday activities do indirectly influence the weather in ways that go far beyond our production of greenhouse gases. Climate scientists and meteorologists have documented these effects for years. 

1. CITIES FORM HEAT ISLANDS.

sunlight shining through city streets and buildings
iStock

They're not exactly wrong when they call the capital of Georgia "Hotlanta." Most populated areas generate heat simply by existing. The dense web of asphalt roads, concrete sidewalks, brick facades, and tar roofs are able to absorb a significant amount of heat from the daytime sun, even in the dead of winter. This human-made insulation, called the urban heat island effect, keeps city centers a tad hotter on hot days and a little less cool on cold days.

While the urban heat island effect might make you think of burning-hot asphalt, it's actually most noticeable during winter storms when air temperatures are hovering right around freezing, putting you right on the line between wet snow, an icy mix, or a cold rain. The artificial warmth from cities can influence the precipitation type in these storms, potentially lowering a city’s snow accumulations compared to its suburbs.

A 2011 study published in the Journal of Applied Meteorology and Climatology [PDF] also found that the urban heat island effect can have a pronounced impact on thunderstorms that form over cities. The researchers studied 91 summertime thunderstorms that formed over Indianapolis, Indiana, and found that their research models could not replicate those thunderstorms without the influence of the urban area beneath the storms.

2. CROPS JACK UP THE HUMIDITY.

wheat crops growing in a field
iStock

If cities can absorb the heat of the day and make it even hotter, you can imagine how the vast swaths of crops that blanket the countryside can also affect our daily weather. Instead of making it hotter, crops can make a humid day unbearable by sending moisture levels almost off the charts on a putrid summer's day.

Corn crops are notorious for pushing dew points—the temperature at which the air reaches 100 percent humidity—up above 80°F in the middle of the summer, creating a dangerous heat index that soars far above 100°F. Compare that to a muggy day, which has a dew point around 70°F, or a comfortably dry day with a dew point in the low 50s.

The harvest can have the opposite effect. In 2016, Mesonet, a network of weather stations in Oklahoma, found that newly harvested areas of wheat in the northern part of the state were hotter and had a lower dew point than their cooler but muggier surroundings.

3. PAVING INCREASES THE INTENSITY OF FLOODS.

multilane highway with heavy traffic
iStock

Our obsession with construction doesn't stop at influencing temperatures. Paving over porous earth with relatively impervious materials like asphalt and concrete has also had a major impact on flooding during heavy rain events. Fewer places for rainwater to escape means that the sudden influx of water builds up in urban areas or runs off and inundates places that had never seen flooding before.

4. NUCLEAR POWER PLANTS CAN TRIGGER NUCLEAR-EFFECT SNOW.

nuclear power plant during the winter
iStock

Lake effect snow is a yearly phenomenon across North America’s Great Lakes, where bitterly cold air flows over the warm lake water, triggering convection that blows ashore as heavy bands of snow. The bands of snow are so intense that communities can see many feet of snow in one day, sometimes accompanied by thunder and lightning.

It's not only bodies of water that can cause this phenomenon. Nuclear power plants release large amounts of steam during the course of their operations, and on cold mornings when there's enough moisture in the air, locations immediately downwind of a power plant's steam stacks can experience "nuclear-effect snow," which forms through similar means as lake effect snow. The phenomenon isn't limited to just nuclear power plants, but they produce enough steam that it’s noticeable over a large area. Thankfully for residents nearby, it doesn't produce much snow—and it’s not radioactive.

5. URBAN DENSITY CAN AMPLIFY WINDS.

girls talking selfie in paris as wind whips their hair around
iStock

If you've ever walked down a city street on a windy day, you’ve probably noticed that it sometimes feels like you're being buffeted by air shot out of an industrial fan instead of a regular windstorm. Dense building construction can amplify the winds and cause gusts to blow much faster than they would out in the open. This wind tunnel effect can cause serious damage, blowing out windows, knocking down trees, and sending dangerous debris hurtling toward the busy streets below.

The principle is the same as holding your thumb over the end of a garden hose to make the water spray out faster—the wind speeds up dramatically as it presses between the buildings. This is also why you should never take shelter underneath a bridge during a tornado. The tornadic winds squeezing underneath the bridge will speed up, increasing the odds that you’ll be pelted by debris or sucked out into the open.

6. JETS CREATE CIRRUS CLOUDS.

plane exhaust in the sky with a foreground of bushes and trees
iStock

The simple act of flying can also create intricate patterns of clouds in the sky that wouldn't have formed had we not perfected the art of air travel. The hot water vapor produced by the engine exhaust of a high-flying jet aircraft leaves contrails, short for condensation trails, in its wake. Contrails can dissipate right away or linger for hours depending on upper-level humidity and winds. These man-made cirrus clouds are most common at high cruising altitudes, but places like the Arctic and Antarctic get cold enough that contrails can form at or near ground level.

Editor's note: This story, which originally ran in 2016, was updated in August 2018.

A Simple Skin Swab Could Soon Identify People at Risk for Parkinson's

iStock.com/stevanovicigor
iStock.com/stevanovicigor

More than 200 years have passed since physician James Parkinson first identified the degenerative neurological disorder that bears his name. Over five million people worldwide suffer from Parkinson’s disease, a neurological condition characterized by muscle tremors and other symptoms. Diagnosis is based on those symptoms rather than blood tests, brain imaging, or any other laboratory evidence.

Now, science may be close to a simple and non-invasive method for diagnosing the disease based on a waxy substance called sebum, which people secrete through their skin. And it’s thanks to a woman with the unique ability to sniff out differences in the sebum of those with Parkinson's—years before a diagnosis can be made.

The Guardian describes how researchers at the University of Manchester partnered with a nurse named Joy Milne, a "super smeller" who can detect a unique odor emanating from Parkinson's patients that is unnoticeable to most people. Working with Tilo Kunath, a neurobiologist at Edinburgh University, Milne and the researchers pinpointed the strongest odor coming from the patients' upper backs, where sebum-emitting pores are concentrated.

For a new study in the journal ACS Central Science, the researchers analyzed skin swabs from 64 Parkinson's and non-Parkinson's subjects and found that three substances—eicosane, hippuric acid, and octadecanal—were present in higher concentrations in the Parkinson’s patients. One substance, perillic aldehyde, was lower. Milne confirmed that these swabs bore the distinct, musky odor associated with Parkinson’s patients.

Researchers also found no difference between patients who took drugs to control symptoms and those who did not, meaning that drug metabolites had no influence on the odor or compounds.

The next step will be to swab a a much larger cohort of Parkinson’s patients and healthy volunteers to see if the results are consistent and reliable. If these compounds are able to accurately identify Parkinson’s, researchers are optimistic that it could lead to earlier diagnosis and more effective interventions.

[h/t The Guardian]

World’s Oldest Stored Sperm Has Produced Some Healthy Baby Sheep

A stock photo of a lamb
A stock photo of a lamb
iStock.com/ananaline

It’s not every day that you stumble across a 50-year-old batch of frozen sheep sperm. So when Australian researchers rediscovered a wriggly little time capsule that had been left behind by an earlier researcher, they did the obvious: they tried to create some lambs. As Smithsonian reports, they pulled it off, too.

The semen, which came from several prize rams, had been frozen in 1968 by Dr. Steve Salamon, a sheep researcher from the University of Sydney. After bringing the sample out of storage, researchers thawed it out and conducted a few lab tests. They determined that its viability and DNA integrity were still intact, so they decided to put it to the ultimate test: Would it get a sheep pregnant? The sperm was artificially inseminated into 56 Merino ewes, and lo and behold, 34 of them became pregnant and gave birth to healthy lambs.

Of course, this experiment wasn’t just for fun. They wanted to test whether decades-old sperm—frozen in liquid nitrogen at -320°F—would still be viable for breeding purposes. Remarkably, the older sperm had a slightly higher pregnancy rate (61 percent) than sheep sperm that had been frozen for 12 months and used to impregnate ewes in a different experiment (in that case, the success rate was 59 percent).

“We believe this is the oldest viable stored semen of any species in the world and definitely the oldest sperm used to produce offspring,” researcher Dr. Jessica Rickard said in a statement.

Researchers say this experiment also lets them assess the genetic progress of selective breeding over the last five decades. “In that time, we’ve been trying to make better, more productive sheep [for the wool industry],” associate professor Simon de Graaf said. “This gives us a resource to benchmark and compare.”

[h/t Smithsonian]

SECTIONS

arrow
LIVE SMARTER