6 Ways Humans Influence the Weather

iStock
iStock

If you've ever spent any length of time on Twitter, you've probably heard a thing or two about humans secretly having the ability to control the weather. While that talent only exists in movies, we humans and our everyday activities do indirectly influence the weather in ways that go far beyond our production of greenhouse gases. Climate scientists and meteorologists have documented these effects for years. 

1. CITIES FORM HEAT ISLANDS.

sunlight shining through city streets and buildings
iStock

They're not exactly wrong when they call the capital of Georgia "Hotlanta." Most populated areas generate heat simply by existing. The dense web of asphalt roads, concrete sidewalks, brick facades, and tar roofs are able to absorb a significant amount of heat from the daytime sun, even in the dead of winter. This human-made insulation, called the urban heat island effect, keeps city centers a tad hotter on hot days and a little less cool on cold days.

While the urban heat island effect might make you think of burning-hot asphalt, it's actually most noticeable during winter storms when air temperatures are hovering right around freezing, putting you right on the line between wet snow, an icy mix, or a cold rain. The artificial warmth from cities can influence the precipitation type in these storms, potentially lowering a city’s snow accumulations compared to its suburbs.

A 2011 study published in the Journal of Applied Meteorology and Climatology [PDF] also found that the urban heat island effect can have a pronounced impact on thunderstorms that form over cities. The researchers studied 91 summertime thunderstorms that formed over Indianapolis, Indiana, and found that their research models could not replicate those thunderstorms without the influence of the urban area beneath the storms.

2. CROPS JACK UP THE HUMIDITY.

wheat crops growing in a field
iStock

If cities can absorb the heat of the day and make it even hotter, you can imagine how the vast swaths of crops that blanket the countryside can also affect our daily weather. Instead of making it hotter, crops can make a humid day unbearable by sending moisture levels almost off the charts on a putrid summer's day.

Corn crops are notorious for pushing dew points—the temperature at which the air reaches 100 percent humidity—up above 80°F in the middle of the summer, creating a dangerous heat index that soars far above 100°F. Compare that to a muggy day, which has a dew point around 70°F, or a comfortably dry day with a dew point in the low 50s.

The harvest can have the opposite effect. In 2016, Mesonet, a network of weather stations in Oklahoma, found that newly harvested areas of wheat in the northern part of the state were hotter and had a lower dew point than their cooler but muggier surroundings.

3. PAVING INCREASES THE INTENSITY OF FLOODS.

multilane highway with heavy traffic
iStock

Our obsession with construction doesn't stop at influencing temperatures. Paving over porous earth with relatively impervious materials like asphalt and concrete has also had a major impact on flooding during heavy rain events. Fewer places for rainwater to escape means that the sudden influx of water builds up in urban areas or runs off and inundates places that had never seen flooding before.

4. NUCLEAR POWER PLANTS CAN TRIGGER NUCLEAR-EFFECT SNOW.

nuclear power plant during the winter
iStock

Lake effect snow is a yearly phenomenon across North America’s Great Lakes, where bitterly cold air flows over the warm lake water, triggering convection that blows ashore as heavy bands of snow. The bands of snow are so intense that communities can see many feet of snow in one day, sometimes accompanied by thunder and lightning.

It's not only bodies of water that can cause this phenomenon. Nuclear power plants release large amounts of steam during the course of their operations, and on cold mornings when there's enough moisture in the air, locations immediately downwind of a power plant's steam stacks can experience "nuclear-effect snow," which forms through similar means as lake effect snow. The phenomenon isn't limited to just nuclear power plants, but they produce enough steam that it’s noticeable over a large area. Thankfully for residents nearby, it doesn't produce much snow—and it’s not radioactive.

5. URBAN DENSITY CAN AMPLIFY WINDS.

girls talking selfie in paris as wind whips their hair around
iStock

If you've ever walked down a city street on a windy day, you’ve probably noticed that it sometimes feels like you're being buffeted by air shot out of an industrial fan instead of a regular windstorm. Dense building construction can amplify the winds and cause gusts to blow much faster than they would out in the open. This wind tunnel effect can cause serious damage, blowing out windows, knocking down trees, and sending dangerous debris hurtling toward the busy streets below.

The principle is the same as holding your thumb over the end of a garden hose to make the water spray out faster—the wind speeds up dramatically as it presses between the buildings. This is also why you should never take shelter underneath a bridge during a tornado. The tornadic winds squeezing underneath the bridge will speed up, increasing the odds that you’ll be pelted by debris or sucked out into the open.

6. JETS CREATE CIRRUS CLOUDS.

plane exhaust in the sky with a foreground of bushes and trees
iStock

The simple act of flying can also create intricate patterns of clouds in the sky that wouldn't have formed had we not perfected the art of air travel. The hot water vapor produced by the engine exhaust of a high-flying jet aircraft leaves contrails, short for condensation trails, in its wake. Contrails can dissipate right away or linger for hours depending on upper-level humidity and winds. These man-made cirrus clouds are most common at high cruising altitudes, but places like the Arctic and Antarctic get cold enough that contrails can form at or near ground level.

Editor's note: This story, which originally ran in 2016, was updated in August 2018.

Fossilized Fat Shows 550-Million-Year-Old Sea Creature May Have Been the World's First Animal

Ilya Bobrovskiy, the Australian National University
Ilya Bobrovskiy, the Australian National University

A bizarre sea creature whose fossils look like a cross between a leaf and a fingerprint may be Earth's oldest known animal, dating back 558 million years.

As New Scientist reports, researchers from the Australian National University (ANU) made a fortunate find in a remote region of Russia: a Dickinsonia fossil with fat molecules still attached. These odd, oval-shaped creatures were soft-bodied, had rib structures running down their sides, and grew about 4.5 feet long. They were as “strange as life on another planet,” researchers wrote in the abstract of a new paper published in the journal Science.

Another variety of fossil
Ilya Bobrovskiy, the Australian National University

Although Dickinsonia fossils were first discovered in South Australia in 1946, researchers lacked the organic matter needed to classify this creature. "Scientists have been fighting for more than 75 years over what Dickinsonia and other bizarre fossils of the Edicaran biota were: giant single-celled amoeba, lichen, failed experiments of evolution, or the earliest animals on Earth,” senior author Jochen Brocks, an associate professor at ANU, said in a statement.

With the discovery of cholesterol molecules—which are found in almost all animals, but not in other organisms like bacteria and amoebas—scientists can say that Dickinsonia were animals. The creatures swam the seas during the Ediacaran Period, 635 million to 542 million years ago. More complex organisms like mollusks, worms, and sponges didn’t emerge until 20 million years later.

The fossil with fat molecules was found on cliffs near the White Sea in an area of northwest Russia that was so remote that researchers had to take a helicopter to get there. Collecting the samples was a death-defying feat, too.

“I had to hang over the edge of a cliff on ropes and dig out huge blocks of sandstone, throw them down, wash the sandstone, and repeat this process until I found the fossils I was after,” lead author Ilya Bobrovskiy of ANU said. Considering that this find could change our understanding of Earth’s earliest life forms, it seems the risk was worth it.

[h/t New Scientist]

The Weird, Disturbing World of Snail Sex

iStock
iStock

Romance is rare in the animal kingdom. Instead of wooing their partners before copulating, male ducks force themselves onto females, depositing genetic material with spiky, corkscrew penises. Then, there's tardigrade sex, which is less violent but not exactly heartwarming. Females lay eggs into a husk of dead skin. The male then ejaculates onto the eggs while stroking the female, and the whole process can take up to an hour.

But you can't talk about disturbing mating rituals in nature without mentioning snails. If you're unfamiliar with snail sexuality, you may assume that snail sex falls on the vanilla side: The mollusks, after all, are famous for being slow-moving and they don't even have limbs. But if you have the patience to watch a pair of snails going at it, you'll notice that things get interesting.

The first factor that complicates snail sex is their genitalia. Snails are hermaphrodites, meaning individuals have both a male set and female set of parts, and any two snails can reproduce with each other regardless of sex. But in order for a couple of snails to make little snail babies, one of them needs to take on the role of the female. That's where the love dart comes in.

The love dart, technically called a gypsobelum, isn't exactly the Cupid's arrow the name suggests. It's a nail-clipping-sized spike that snails jab into their partners about 30 minutes before the actual sex act takes place. The sliver is packed with hormones that prepare the receiving snail's body for sperm. Depending on the species, only one snail might release the dart, or they both might in an attempt to avoid becoming the female of the pair. You can watch the action in the video below.

For sex to be successful, both snails must insert their penises into the other's vaginal tracts at the same time. Both snails deposit sperm, and the strength of the love dart ultimately determines whether or not that sperm fertilizes their partner's eggs.

That's assuming the snail survives the little love-stab. In human proportions, the love dart is the equivalent of a 15-inch knife. Fortunately, snails are resilient creatures, and gastropod researcher Joris Koene tells KQED he's only ever seen one snail die from the transfer.

Snails also have a way of making it up to their partners after skewering them with a hormone stick. Their sperm deposit contains a dose of fortifying nutrients, something scientists refer to as a nuptial gift. It may not equal the energy expended during sex, but its enough to give them a small post-coital boost.

SECTIONS

arrow
LIVE SMARTER