CLOSE
Damien Meyer/AFP/Getty Images
Damien Meyer/AFP/Getty Images

Mushrooms Can Make It Rain—And a Lot More

Damien Meyer/AFP/Getty Images
Damien Meyer/AFP/Getty Images
A fly agaric (Amanita muscaria) fungus grows in the northwestern French city of Thorigne-Fouillard. With its red cap and white spots, the fly agaric is one of the most iconic and distinctive of fungi, renowned for its toxicity and hallucinogenic properties. Image credit: Damien Meyer/AFP/Getty Images

Welcome to the kingdom Fungi: the not-quite-plant, not-quite-animal organisms that have existed for somewhere between 760 million and 1 billion years and somehow have managed to remain full of mysteries. In one of their latest reveals, the fungi have presented us with yet another mysterious trait: They seem to be affecting the weather surrounding their habitats, scientists have found.

In other words, these mostly earth-dwelling organisms can stimulate rain in the atmosphere.

And they can do a lot more than that. Fungi come in all shapes and forms and affect humans and the planet in myriad ways. Whether you’re a mycophagist with exceptional taste for exotic mushrooms, a beer enthusiast, a sufferer of athlete’s foot, a farmer whose crops are assaulted by rust fungus, or even someone who has never given a single thought to the kingdom Fungi—you’ve crossed paths with them. Yet, scientists estimate they've discovered fewer than 10 percent of all fungal species, and researchers continue to learn new things about their origins, life spans, and relationship with plants and animals.

The finding that these organisms can affect the weather has raised questions about how they could be employed to help us control the weather and what impact they might have on the climate more broadly.

THE OTHER KIND OF MUSHROOM CLOUDS

It all started with sugar—mannitol, to be precise. This sugar alcohol is found in strawberries, pumpkins, candies, and cough drops, among other things. It’s common enough in food products, but scientists initially couldn’t figure out what it was doing in the atmosphere—especially above rainforests. Then they realized the sugar was clinging to spores that had been released in vast quantities above the forests; a single gilled mushroom can release as many as 30,000 spores every second. That, combined with prior research, got fungal biologist Nicholas Money of Miami University and his colleagues wondering about what else those spores did in the atmosphere. Was it possible the spores from mushrooms were actually seeding clouds?

Although “seeding” often describes human-engineered attempts to control the weather, clouds really do need condensation nuclei to form precipitation. Before moisture can form rain, snow, sleet or hail, it needs to form water droplets. In a process known as “super-cooling,” water stays liquid even at temperatures well below 0ºC and remains vapor until it comes in contact with a solid “seed.” This can be a speck of dust, a crystal of ice—or a mushroom spore.

But before Money could know whether spores could act as seeds for rain formation, he first needed to understand the mushrooms’ spore dispersal methods.

“Beautiful feats of evolutionary design can be observed in the fungi,” Money told mental_floss. “They’ve got ways of moving that nothing else in the world utilizes. They use squirt guns that squirt spores into the air. They have a snap-buckling device that launches a massive ball of spores that can travel a distance of many meters. Six meters. Astonishing for a microorganism. They have a mechanism based on the explosive formation of gas bubbles in their cells."

In the case of the gilled mushrooms Money was studying, the spores are propelled by the displacement of water droplets. As one droplet forms and slides down the spore to join a second droplet, the spore shoots into the air from the sudden shift in weight. Having seen water condense around the spore in the dispersal process, Money predicted new droplets would continue to condense even after the spore was airborne. Research in the lab showed that hypothesis to be true.

“Mushrooms are controlling the local weather patterns where there are really high numbers of mushroom spores—not only in rainforests, but also forests in the Northern Hemisphere,” Money said. “It’s not that mushrooms are the sole contributors to rainfall, but their spores may actually stimulate it.” In addition to helping the forest, producing rain is a nice trick for the fungi; they need humid conditions to flourish.

MICROBIAL CLIMATE CONTROL

Rainmaking fungus sounds like good news for the climate, but it’s not the full story of fungi’s effect on climate. Saprotrophic fungi—a group that decomposes a variety of carbon sources, including petroleum, leaf litter, wood, and food products—permeate these plants and materials to unlock nutrients. During the process, they convert carbon into carbon dioxide. This lignocellulose decomposition—meaning the breakdown of lignin and cellulose in the cell walls of plants—is the world’s largest source of carbon dioxide (CO2) emissions, surpassing CO2 emissions from the burning of fossil fuels by a factor of 10. This isn’t to say fungi are the drivers of climate change; in the past, the release of carbon dioxide was balanced by absorption of the gas by plants and photosynthetic microbes.

And it turns out some fungi are helping those plants and microbes absorb and store even more CO2. When talking about climate change, most people immediately think of carbon in the atmosphere. But there’s actually much more carbon in the soil. Scientists estimate there are around 2500 billion tons of carbon in the soil, compared with only 800 billion tons in the atmosphere and 560 billion tons in plant and animal life.

One of the main ways carbon moves into and is stored in the soil is through mycorrhizal fungi, which has a symbiotic relationship with trees. The fungi, which fit broadly into three families, live on tree roots and take carbon from the tree while providing it with nitrogen, phosphorous, water, and micronutrients. A study that looked at the mycorrhizal relationship found that the less common fungi (ectomycorrhizas and ericoid mycorrhizas) help soil store up to 70 percent more carbon than soil filled with the more common mycorrhizal communities. They do this by absorbing more nitrogen, which in turn limits the activity of microorganisms that normally act as decomposers returning carbon to the atmosphere. What this means is that certain fungal types could potentially be harnessed to lock away more carbon—and keep it out of the atmosphere.

“There has been some work looking at bioengineering these fungi,” Greg Mueller, chief scientist and Negaunee Foundation vice president of science at the Chicago Botanic Garden, told mental_floss. He says the goal is to create "a sort of super-mycorrhizal fungi” that could help soil store more carbon than it would do without these specific fungi. But you might run the risk of losing the lesser-understood benefits of fungal biodiversity, Mueller added.

The other problem is mycologists just don’t know what all is out there in the soil. Based on prior sampling, scientists have found there’s more fungal life than anything else—but as for what the fungi do and how they function, there hasn’t been enough collected yet.

“It’s like there’s this big jar of jelly beans of different colors,” Mueller said. “We go in and grab a handful, but we haven’t gotten many colors yet. So far they’re distinct, but we might get repeat colors eventually.”

FUNGI OF THE FUTURE

Given how widespread fungi are, there are potentially numerous applications for bioengineering them to benefit the planet. In addition to harnessing fungi to store more carbon in the soil, scientists have suggested using mycorrhizal fungi to boost crop yields by providing the food plants with extra nutrients. This bio-fertilizer could reduce farmers’ need to use phosphorous fertilizers, which disrupt aquatic life and can cause deadly algal blooms.

The mycorrhizal fungi can also help scientists study climate change and monitor how shifting temperatures are affecting different types of forests. Using satellite imagery, a team at NASA’s Jet Propulsion Laboratory was able to detect the hidden network of fungi living among the trees. They discovered that the type of mycorrhizal fungi living with the trees impacts when the trees start growing leaves and when they reach peak greenness. By monitoring changes in these forests, scientists will be able to deduce how each type of fungi reacts to shifts in the climate.

But there’s also a chance that fungi will do as much harm as good. As temperatures warm, the rate at which certain fungal diseases kill plants and animals is rising. The fungal disease called white-nose syndrome has killed millions of bats, and the skin fungus Batrachochytrium dendrobatidis (Bd) attacks hundreds of species of amphibians around the world.

“Pathogens we’re seeing may become more of a problem because the trees that they attack are being stressed by climate change. What was once a nuisance might become a more important pathogen,” Mueller said.

Money takes an even bleaker view of the problem of climate change. “The biosphere is dependent on microorganisms,” he said. “But I don’t think mushrooms will save the planet, and I would say that most forcibly. The planet is changing, and the biggest philosophical challenge is how we respond to the fact that we damaged things and how we can restore things—if we can.”

Fungi are undoubtedly influential in ways most of us rarely consider. From seeding rain clouds to helping soil soak up carbon, these microbial life forms are having real and powerful impacts on the world—and human activity is having equally important impacts on them. The difficult task ahead of us is to better understand these interactions and whether they offer positive or negative effects on the planet. And while we wait for the scientists to do more research, we should all appreciate the invisible world beneath our feet—and above our heads.

nextArticle.image_alt|e
NASA, JPL-Caltech
arrow
Space
It's Official: Uranus Smells Like Farts
NASA, JPL-Caltech
NASA, JPL-Caltech

Poor Uranus: After years of being the butt of many schoolyard jokes, the planet's odor lives up to the unfortunate name. According to a new study by researchers at the University of Oxford and other institutions, published in the journal Nature Astronomy, the upper layer of Uranus's atmosphere consists largely of hydrogen sulfide—the same compound that gives farts their putrid stench.

Scientists have long suspected that the clouds floating over Uranus contained hydrogen sulfide, but the compound's presence wasn't confirmed until recently. Certain gases absorb infrared light from the Sun. By analyzing the infrared light patterns in the images they captured using the Gemini North telescope in Hawaii, astronomers were able to get a clearer picture of Uranus's atmospheric composition.

On top of making farts smelly, hydrogen sulfide is also responsible for giving sewers and rotten eggs their signature stink. But the gas's presence on Uranus has value beyond making scientists giggle: It could unlock secrets about the formation of the solar system. Unlike Uranus (and most likely its fellow ice giant Neptune), the gas giants Saturn and Jupiter show no evidence of hydrogen sulfide in their upper atmospheres. Instead they contain ammonia, the same toxic compound used in some heavy-duty cleaners.

"During our solar system's formation, the balance between nitrogen and sulfur (and hence ammonia and Uranus’s newly detected hydrogen sulfide) was determined by the temperature and location of planet’s formation," research team member Leigh Fletcher, of the University of Leicester, said in a press statement. In other words, the gases in Uranus's atmosphere may be able to tell us where in the solar system the planet formed before it migrated to its current spot.

From far away, Uranus's hydrogen sulfide content marks an exciting discovery, but up close it's a silent but deadly killer. In large enough concentrations, the compound is lethal to humans. But if someone were to walk on Uranus without a spacesuit, that would be the least of their problems: The -300°F temperatures and hydrogen, helium, and methane gases at ground level would be instantly fatal.

nextArticle.image_alt|e
iStock
arrow
Live Smarter
Feeling Anxious? Just a Few Minutes of Meditation Might Help
iStock
iStock

Some say mindfulness meditation can cure anything. It might make you more compassionate. It can fix your procrastination habit. It could ward off germs and improve health. And it may boost your mental health and reduce stress, anxiety, depression, and pain.

New research suggests that for people with anxiety, mindfulness meditation programs could be beneficial after just one session. According to Michigan Technological University physiologist John Durocher, who presented his work during the annual Experimental Biology meeting in San Diego, California on April 23, meditation may be able to reduce the toll anxiety takes on the heart in just one session.

As part of the study, Durocher and his colleagues asked 14 adults with mild to moderate anxiety to participate in an hour-long guided meditation session that encouraged them to focus on their breathing and awareness of their thoughts.

The week before the meditation session, the researchers had measured the participants' cardiovascular health (through data like heart rate and the blood pressure in the aorta). They evaluated those same markers immediately after the session ended, and again an hour later. They also asked the participants how anxious they felt afterward.

Other studies have looked at the benefits of mindfulness after extended periods, but this one suggests that the effects are immediate. The participants showed significant reduction in anxiety after the single session, an effect that lasted up to a week afterward. The session also reduced stress on their arteries. Mindfulness meditation "could help to reduce stress on organs like the brain and kidneys and help prevent conditions such as high blood pressure," Durocher said in a press statement, helping protect the heart against the negative effects of chronic anxiety.

But other researchers have had a more cautious outlook on mindfulness research in general, and especially on studies as small as this one. In a 2017 article in the journal Perspectives on Psychological Science, a group of 15 different experts warned that mindfulness studies aren't always trustworthy. "Misinformation and poor methodology associated with past studies of mindfulness may lead public consumers to be harmed, misled, and disappointed," they wrote.

But one of the reasons that mindfulness can be so easy to hype is that it is such a low-investment, low-risk treatment. Much like dentists still recommend flossing even though there are few studies demonstrating its effectiveness against gum disease, it’s easy to tell people to meditate. It might work, but if it doesn't, it probably won't hurt you. (It should be said that in rare cases, some people do report having very negative experiences with meditation.) Even if studies have yet to show that it can definitively cure whatever ails you, sitting down and clearing your head for a few minutes probably won't hurt.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios