CLOSE

15 Intriguing Facts About the Antikythera Mechanism

The Antikythera mechanism on display at the National Archaeological Museum in Athens. Image credit: Tilemahos Efthimiadis via Wikimedia Commons // CC BY 2.0

This week, researchers from the Antikythera Mechanism Research Project announced new insights about the mysterious Antikythera mechanism, an unusual artifact that has intrigued archaeologists, classicists, historians, and the public for decades. Here are 15 facts about the mechanism, sometimes called “the world’s first computer.” Jump right to #12, #13, and #14 for the latest interpretations of this singular object. 

1. IT WAS FOUND IN A ROMAN-ERA SHIPWRECK AND NAMED AFTER A GREEK ISLAND. 

Located in the Aegean Sea between mainland Greece and Crete, Antikythera is an island that literally means “opposite of Kythera,” another, much larger island. The ship is assumed to be Roman and, when it sank just off the coast of the island in the middle of the 1st century BCE, carried a huge number of artifacts dating back to as early as the 4th century BCE.

2. THE FIRST EXPLORATION OF THE WRECK KILLED ONE DIVER AND PARALYZED TWO OTHERS.

In 1900, Greek sponge divers found the shipwreck, which was submerged nearly 150 feet, while wearing gear that was standard for the early 20th century—canvas suits and copper helmets. When the original diver surfaced with reports of artifacts, horses, and corpses, the captain assumed he had “raptures of the deep”—essentially, a drunkenness as a result of the nitrogen in the breathing mix piped into the diving helmet. Although that diver was actually fine, later exploration in the summer of 1901 caused the death of one diver and the paralysis of two more from decompression sickness or "the bends.”

3. THREE IMPORTANT ROMANS MAY HAVE BEEN INVOLVED.

An astrophysicist at Athens University, Xenophon Moussas, theorized in 2006 that the boat on which the mechanism was found may have been headed to Rome as part of a triumphal parade for the emperor Julius Caesar in the 1st century BCE. A related theory is that the ship was carrying booty from the Roman general Sulla’s sack of Athens in 87–86 BCE. In the same time period, the famous Roman orator Marcus Tullius Cicero mentioned a mechanical planetarium called a “sphere of Archimedes” that demonstrated how the Sun, Moon, and planets moved with respect to the Earth. More recent research, though, suggests that the ship may have been en route to Rome from Turkey. The ship’s path has been difficult to trace because the Aegean was an important and busy shipping area at this time.

4. THE MECHANISM'S IMPORTANCE WASN'T RECOGNIZED FOR 75 YEARS.

A reproduction of the front of the mechanism on display at the National Archaeological Museum in Athens. Image credit: Giovanni Dall'Ortovia via Wikimedia Commons

The unique bronze-and-wood object was found with a shipload of marble, coins, glassware, and pottery in 1900. Since all the other artifacts were more apparently worthy of conservation, the mechanism was ignored until 1951. After an additional two decades of study, the first publication on the Antikythera mechanism was made in 1974 by physicist and historian Derek de Solla Price. But Price’s work was unfinished when he died in 1983, without having figured out how the device actually worked.

5. JACQUES COUSTEAU AND RICHARD FEYNMAN WERE BOTH FASCINATED BY IT.

The famous marine explorer Jacques Cousteau and his team dived the Antikythera shipwreck in 1976, shortly after Price’s primary publication, finding coins from the 1st century BCE and a few smaller bronze pieces of the mechanism. A few years later, noted physicist Richard Feynman visited the National Museum in Athens. Feynman reportedly was terribly unimpressed by the museum as a whole, but wrote that the Antikythera mechanism was “so entirely different and strange that it is nearly impossible … it is some kind of machine with gear trains, very much like the inside of a modern wind-up alarm clock.”

6. IT'S BEEN CALLED THE WORLD'S FIRST COMPUTER.

Since long before the invention of the digital computer you are undoubtedly reading this on, there have been analog computers. These types of computers range from mechanical aids like a slide rule to a device that can predict the tides. The Antikythera mechanism, which was designed to calculate dates and predict astronomical phenomena, has therefore been called the earliest analog computer.

7. THE INVENTOR OF TRIGONOMETRY MAY HAVE ALSO CREATED THE MECHANISM.

Hipparchus is primarily known as an ancient astronomer; he was born in what is now Turkey around 190 BCE and worked and taught primarily on the island of Rhodes. His works survive almost entirely through later Greek and Roman authors. Hipparchus was one of the first thinkers to speculate that the Earth revolved around the Sun, but he could never prove it. Hipparchus created the first trigonometric table in his attempts to solve problems related to spheres, and is therefore known as the father of trigonometry. Because of these other discoveries—and because Cicero mentions a planetary device that was constructed by Posidonius, who took over Hipparchus’s school on Rhodes after his death—the Antikythera mechanism is often attributed to Hipparchus. New research, though, has shown handwriting of two different people on the mechanism, suggesting it was likely created in a workshop or family business.

8. IT WAS SO TECHNOLOGICALLY ADVANCED, NOTHING SURPASSED IT FOR CLOSE TO 1500 YEARS.

Consisting of at least 30 bronze gears in a wooden container that was only the size of a shoebox, the clockwork mechanism was highly advanced for its time. By turning a hand-crank, the user could move forward or backward in time. The crank made the gears move and rotate a series of dials and rings on which there are inscriptions and annotations of Greek zodiac signs and Egyptian calendar days. It seems that the information to build such a mechanism was lost through time, perhaps because it was a specialty device or expensive to create. Similar astronomical clocks didn’t reappear in Europe until the 14th century. Since inventions like this do not usually come from nothing, though, many researchers think that we may yet find older precursors in an archaeological context some day.

9. IT WAS DESIGNED TO MONITOR CELESTIAL EVENTS, SEASONS, AND FESTIVALS.

A 2007 reproduction of the mechanism, with the front panel at foreground, by science modeler Massimo Mogi Vicentini. Image credit: Mogi Vicentini via Wikimedia Commons // CC BY 2.5

The mechanism tracked the lunar calendar, predicted eclipses, and charted the position and phase of the Moon. It also tracked the seasons and ancient festivals like the Olympics. The calendar is based on the time from one full moon to the next, and a special dial allowed the user to also envision the seasons, which would have been useful for agriculture. Since the ancient Babylonians figured out the cycle of eclipses, the inventor of the Antikythera mechanism included two dials that rotate to show both lunar and solar eclipses. But the most sophisticated thing the mechanism did was lunar calculations—it could figure out the Moon’s period at a given time and model its elliptical orbit.

10. IT HAS A BUILT-IN INSTRUCTION MANUAL.

Writing on a bronze panel at the back of the mechanism suggests the inventor left either instructions for how to work it or an explanation of what the user was seeing. The inscription, which is in Koine Greek (the most common form of the ancient language), mentions the cycles, dials, and some of the functions of the mechanism. While the text doesn’t specifically tell someone how to use it, and assumes some amount of prior knowledge of astronomy, it provides written-out labels for the person looking at the mechanism.

11. NO ONE IS SURE WHO USED THE MECHANISM …

While many of its functions have been figured out, how and where it was used are still unknown. Scholars think that it could have been employed in a temple or school, but could just as easily have been a fancy curio for a rich family. Without any other comparable artifacts or explanatory inscriptions, we don’t yet know who would have used this object or to what end.

12. …BUT THEY'RE CLOSING IN ON WHERE IT WAS MADE.

The use of Koine in the numerous inscriptions places the creation of the mechanism in the Greek world, which was geographically large at the time. The festival dial mentions the Olympics in central Greece, the Naa in northwest Greece, and the Halieia on the island of Rhodes. The latest analysis of the inscriptions, reported this week by classicist Alexander Jones and colleagues, suggests the mechanism could keep track of at least 42 different calendar events. With those dates in mind, Jones and colleagues calculate that the creator of the mechanism was likely based at 35°N latitude. Coupled with Cicero’s mention of a similar device at Posidonius’s school, this means that the island of Rhodes is again the leading contender for the origin of the mechanism.

13. THE DEVICE ALSO TOLD FORTUNES.

Jones and colleagues’ new interpretation of the mechanism is based on the extant 3400 Greek characters on the device, although thousands more characters are likely missing due to the incomplete nature of the artifact. Most notably, in their thorough linguistic analysis, these scholars discovered that the mechanism refers to eclipses’ color, size, and associated winds. The Greeks believed that characteristics of an eclipse were related to good and bad omens. Because of this belief, by building in predictive eclipse technology, the creator of the mechanism was letting the user divine the future.

14. PLANETARY MOTION IN THE MECHANISM WAS ACCURATE TO WITHIN ONE DEGREE IN 500 YEARS.

The mechanism includes hands or pointers for Mercury, Venus, Mars, Jupiter, and Saturn, all of which are easily visible in the sky, as well as a rotating ball that showed the phases of the Moon. The parts that work these planetary pointers are gone, but text on the front plate of the mechanism confirms, according to Jones and his team, that the planetary motion was modeled mathematically using numerous complex gears—and that it was highly accurate.

15. THERE MAY ACTUALLY BE TWO ANTIKYTHERA SHIPWRECKS.

Since Cousteau explored in the mid-1970s, little work has been done at the underwater archaeological site because of the remote location and the depth of the water. In 2012, marine archaeologists from the Woods Hole Oceanographic Institute and the Hellenic Ephorate of Underwater Antiquities again dove the wreck with the latest, high-tech scuba gear. They found a massive spread of amphorae and other artifacts. This means that either the Roman ship was vastly larger than previously thought or there is a separate wreck down there. Excavations have been ongoing for several years, with new artifacts brought up constantly. Summer 2016 is poised to reveal even more about the Antikythera shipwreck. You can follow along in real time via the Woods Hole website and blog.

nextArticle.image_alt|e
Penn Vet Working Dog Center
arrow
Stones, Bones, and Wrecks
New Program Trains Dogs to Sniff Out Art Smugglers
Penn Vet Working Dog Center
Penn Vet Working Dog Center

Soon, the dogs you see sniffing out contraband at airports may not be searching for drugs or smuggled Spanish ham. They might be looking for stolen treasures.

K-9 Artifact Finders, a new collaboration between New Hampshire-based cultural heritage law firm Red Arch and the University of Pennsylvania, is training dogs to root out stolen antiquities looted from archaeological sites and museums. The dogs would be stopping them at borders before the items can be sold elsewhere on the black market.

The illegal antiquities trade nets more than $3 billion per year around the world, and trafficking hits countries dealing with ongoing conflict, like Syria and Iraq today, particularly hard. By one estimate, around half a million artifacts were stolen from museums and archaeological sites throughout Iraq between 2003 and 2005 alone. (Famously, the craft-supply chain Hobby Lobby was fined $3 million in 2017 for buying thousands of ancient artifacts looted from Iraq.) In Syria, the Islamic State has been known to loot and sell ancient artifacts including statues, jewelry, and art to fund its operations.

But the problem spans across the world. Between 2007 and 2016, U.S. Customs and Border Control discovered more than 7800 cultural artifacts in the U.S. looted from 30 different countries.

A yellow Lab sniffs a metal cage designed to train dogs on scent detection.
Penn Vet Working Dog Center

K-9 Artifact Finders is the brainchild of Rick St. Hilaire, the executive director of Red Arch. His non-profit firm researches cultural heritage property law and preservation policy, including studying archaeological site looting and antiquities trafficking. Back in 2015, St. Hilaire was reading an article about a working dog trained to sniff out electronics that was able to find USB drives, SD cards, and other data storage devices. He wondered, if dogs could be trained to identify the scents of inorganic materials that make up electronics, could they be trained to sniff out ancient pottery?

To find out, St. Hilaire tells Mental Floss, he contacted the Penn Vet Working Dog Center, a research and training center for detection dogs. In December 2017, Red Arch, the Working Dog Center, and the Penn Museum (which is providing the artifacts to train the dogs) launched K-9 Artifact Finders, and in late January 2018, the five dogs selected for the project began their training, starting with learning the distinct smell of ancient pottery.

“Our theory is, it is a porous material that’s going to have a lot more odor than, say, a metal,” says Cindy Otto, the executive director of the Penn Vet Working Dog Center and the project’s principal investigator.

As you might imagine, museum curators may not be keen on exposing fragile ancient materials to four Labrador retrievers and a German shepherd, and the Working Dog Center didn’t want to take any risks with the Penn Museum’s priceless artifacts. So instead of letting the dogs have free rein to sniff the materials themselves, the project is using cotton balls. The researchers seal the artifacts (broken shards of Syrian pottery) in airtight bags with a cotton ball for 72 hours, then ask the dogs to find the cotton balls in the lab. They’re being trained to disregard the smell of the cotton ball itself, the smell of the bag it was stored in, and ideally, the smell of modern-day pottery, eventually being able to zero in on the smell that distinguishes ancient pottery specifically.

A dog looks out over the metal "pinhweel" training mechanism.
Penn Vet Working Dog Center

“The dogs are responding well,” Otto tells Mental Floss, explaining that the training program is at the stage of "exposing them to the odor and having them recognize it.”

The dogs involved in the project were chosen for their calm-but-curious demeanors and sensitive noses (one also works as a drug-detection dog when she’s not training on pottery). They had to be motivated enough to want to hunt down the cotton balls, but not aggressive or easily distracted.

Right now, the dogs train three days a week, and will continue to work on their pottery-detection skills for the first stage of the project, which the researchers expect will last for the next nine months. Depending on how the first phase of the training goes, the researchers hope to be able to then take the dogs out into the field to see if they can find the odor of ancient pottery in real-life situations, like in suitcases, rather than in a laboratory setting. Eventually, they also hope to train the dogs on other types of objects, and perhaps even pinpoint the chemical signatures that make artifacts smell distinct.

Pottery-sniffing dogs won’t be showing up at airport customs or on shipping docks soon, but one day, they could be as common as drug-sniffing canines. If dogs can detect low blood sugar or find a tiny USB drive hidden in a house, surely they can figure out if you’re smuggling a sculpture made thousands of years ago in your suitcase.

nextArticle.image_alt|e
iStock
arrow
Big Questions
Why Don't Valentine Hearts Look Like Real Hearts?
iStock
iStock

Love is in the air this month, and images of two-lobed hearts are all over everything: candy, cards, decorations, you name it. That the heart is symbolic of love and passion isn't surprising—ancient Greek and Roman thinkers, including Aristotle, thought the organ was the center of all emotions. Why the heart symbol you see everywhere in February doesn't look anything like an actual human heart, though, is a little less clear.

The symbol goes at least as far back as the 1400s, when it appeared on European playing cards to mark one of the red suits, though it may even be older than that. The shape is pretty much a mystery, though. There are a few different hypotheses to explain it, but none of them have been confirmed.

One suggested origin for the symbol is that it comes from the ancient African city-state of Cyrene, whose merchants traded in the rare, and now extinct, plant silphium. The plant was used to season food, but doubled as a contraceptive. A silphium seedpod looks like a valentine's heart, so the shape became associated with sex, and then with love.

Another possibility is that the shape is a crude representation of a pubic mound, the vulva, a pair of breasts, buttocks, or a pair of testicles. It may even have come from a poor attempt at drawing an actual heart. A lousy artist, an inaccurate description of the subject, or a malformed model all could have led to that shape.

The Catholic church explains the symbol as coming from a vision that Saint Margaret Mary Alacoque had, where the "Sacred Heart of Jesus"—associated with love and devotion by Catholics—appeared in this shape surrounded by thorns. But Alacoque didn't have this vision until the late 1600s, well after the symbol was already documented. This makes it the unlikeliest of origin stories, but the church's frequent use of the shape was probably a driving factor in popularizing it as a symbol of love.

This story originally appeared in 2012.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios