CLOSE
iStock
iStock

Why Do People Call Rock-Paper-Scissors "Roshambo?"

iStock
iStock

In some circles, the decisive game of Rock, Paper, Scissors goes by another name: roshambo. In the U.S.,the term is more commonly used on the West Coast, especially in northern California. This week, the Slate podcast Lexicon Valley invited Wall Street Journal language columnist Ben Zimmer to dive into the origins of the moniker "roshambo."

According to certain legends, the term dates back to the Comte de Rochambeau, a French nobleman who fought against the British during the Revolutionary War (and gets a shoutout in hit musical Hamilton). His name served as a codeword at the battle of Yorktown, where he commanded the French troops.

However, “there’s no historical evidence of it going back to Revolutionary times,” Zimmer tells Lexicon Valley. The earliest known use of "roshambo" as a synonym for the game of Rock, Paper, Scissors is found in a 1936 book called The Handbook for Recreation Leaders, published in Oakland, California. That mention spelled it “ro-sham-beau.”

Zimmer says that the Comte de Rochambeau had no involvement with the game of Rock, Paper, Scissors. Versions of the game originated in China as far back as 1600 before spreading to Japan, where it was called “Jon Ken Pon.” The Japanese game eventually spread to Europe in the early 20th century, and made it to the U.S. in the 1930s.

Because the San Francisco area has long been home to a large population of East Asian immigrants, it’s likely that kids playing the early version of Rock, Paper, Scissors became familiar with the Japanese name Jon Ken Pon. While there’s little historical evidence to trace the change, Zimmer hypothesizes that Bay Area kids in the ‘30s ended up Americanizing the name (perhaps with the help of the Revolutionary War knowledge they picked up in history class) and transforming it into a word with similar cadence: “roshambo.”

Listen to the whole episode on Slate.

nextArticle.image_alt|e
Cell Free Technology
arrow
technology
This Pixel Kit Will Let You Play Tetris With Jellyfish DNA
Cell Free Technology
Cell Free Technology

Forget playing Tetris on your phone. Now you can play it with jellyfish DNA. Bixels is a DIY game kit that lets you code your own games using synthetic biology, lighting up a digital display with the help of DNA.

Its 8-by-8 pixel grid is programmed to turn on with the help of the same protein that makes jellyfish glow, called green fluorescent protein (GFP). But you can program it to do more than just passively shine. You can use your phone and the associated app to excite Bixels' fluorescent proteins and make them glow at different frequencies, producing red, blue, and green colors. Essentially, you can program it like you would any computer, but instead of electronics powering the system, it's DNA.

Two blue boxes hold Bixel pixel grids.

Researchers use green fluorescent protein all the time in lab experiments as an imaging agent to illuminate biological processes for study. With Bixels, all you need is a little programming to turn the colorful lights (tubes filled with GFP) into custom images or interactive games like Tetris or Snake. You can also use it to develop your own scientific experiments. (For experiment ideas, Bixels' creator, the Irish company Cell-Free Technology, suggests the curricula from BioBuilder.)

A screenshot shows a user assembling a Bixel kit on video.

A pixel kit is housed in a cardboard box that looks like a Game Boy.

Bixels is designed to be used by people with all levels of scientific knowledge, helping make the world of biotechnology more accessible to the public. Eventually, Cell-Free Technology wants to create a bio-computer even more advanced than Bixels. "Our ultimate goal is to build a personal bio-computer which, unlike current wearable devices, truly interacts with our bodies," co-founder Helene Steiner said in a press release.

Bixels - Play tetris with DNA from Cell-Free Technology on Vimeo.

You can buy your own Bixel kit on Kickstarter for roughly $118. It's expected to ship in May 2018.

All images courtesy Cell-Free Technology

nextArticle.image_alt|e
Habibou Kouyate, Stringer, Getty Images
arrow
science
Play a Game to Help Scientists Defeat a Cancer-Causing Toxin
Habibou Kouyate, Stringer, Getty Images
Habibou Kouyate, Stringer, Getty Images

If you're used to fighting virtual zombies or flying spaceships on your computer, a new series of games available on Foldit may sound a little unconventional. The object of the Aflatoxin Challenge is to rearrange protein structures and create new enzymes. But its impact on the real world could make it the most important game you've ever played: The scientists behind it hope it will lead to a new way to fight one of the most ruthless causes of liver cancer.

As Fast Company reports, the citizen science project is a collaboration between Mars, Inc. and U.C. Davis, the University of Washington, the Partnership for Aflatoxin Control in Africa, and Thermo Fisher Scientific. The team's online puzzles, which debuted on Foldit earlier this month, invite the public to create a new enzyme capable of finding and destroying carcinogens known as aflatoxins.

Aflatoxins form when certain fungi grow on crops like corn, nuts, and grains. Developing countries often don't have the resources to detect it in food, leaving around 4.5 billion people vulnerable to it. When people do eat food with high aflatoxin levels unknowingly, they can contract liver cancer. Roughly a quarter of all liver cancer cases around the world can be traced back to aflatoxin exposure.

The toxin's connection to agriculture is why the food giant Mars is so interested in fighting it. By working on a way to stop aflatoxins on a molecular level, the company could prevent its spread more efficiently than they would with less direct methods like planting drought-resistant crops or removing mold by hand.

The easiest way for scientists to eradicate an aflatoxin before it causes real harm is by making an enzyme that does the work for them. With the Aflatoxin Challenge, the hope is that by manipulating protein structures, online players will come up with an enzyme that attacks aflatoxins at a susceptible portion of their molecular structure called a lactone ring. Destroying the lactone ring makes aflatoxin much less toxic and essentially safe to eat.

The University of Washington launched Foldit in 2008. Since then, the online puzzle platform has been used to study a wide range of diseases including AIDS and Chikungunya. Everyone is welcome to contribute to the Foldit's new aflatoxin project for the next several weeks or so, after which scientists will synthesize genes based on the most impressive results to be used in future studies.

[h/t Fast Company]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios